Harmonic mean, Mathematics

Assignment Help:

If a, b and c are in harmonic progression with b as their harmonic mean then,

= 2003_harmonic mean.png

This is obtained as follows. Since a, b and c are in harmonic progression, 1/a, 1/b and 1/c are in arithmetic progression. Then,

        2272_harmonic mean1.png

This can be written as

1142_harmonic mean2.png

On cross multiplication we obtain

         2ac=b(a + c)

That is, b = 263_harmonic mean3.png

The second proposition we are going to look at in this part is: If A, G and H are the arithmetic, geometric and harmonic means respectively between two given quantities a and b then G2 = AH. The explanation is given below.

We know that the arithmetic mean of a and b is  605_harmonic mean4.png and it is given that this equals to A.

Similarly G2 = ab and H  = 1894_harmonic mean5.png  
The product of AH = 1369_harmonic mean6.png = ab. This we observe is equal to G2.

That is, G2 = AH, which says that G is the geometric mean between A and H.

Example 1.5.12

Insert two harmonic means between 4 and 12.

We convert these numbers into A.P. They will be 1/4 and 1/12. Including the two arithmetic means we have four terms in all. We are given the first and the fourth terms. Thus,

         T0      =       a = 1/4 and

         T4      =       a + 3d = 1/12

Substituting the value of a = 1/4 in T4, we have 

         1/4 + 3d     = 1/12

         3d             = 1/12 - 1/4 = - 1/6

         d               = -1/18

Using the values of a and d, we obtain T2 and T3.

         T2      =       a + d = 1/4 + (-1/18)

                                     = 1/4 - 1/18 = 7/36

         T3      =       a + 2d =  1/4 + 2.(-1/18)

                                      =  1/4 - 2/18

                                      =  1/4 - 1/9

                                      =   5/36

The reciprocals of these two terms are 36/7 and 36/5.

Therefore, the harmonic series after the insertion of two means will be 4, 36/7, 36/5 and 12.


Related Discussions:- Harmonic mean

Calculus, find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx...

find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx

Solution of rectilinear figures, A straight line AB on the side of a hill i...

A straight line AB on the side of a hill is inclined at 15.0° to the horizontal. The axis of a tunnel 486ft. long is inclined 28.6° below the horizontal lies in a vertical plane wi

Proof of alternating series test, Proof of Alternating Series Test With...

Proof of Alternating Series Test With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place

Intrgers, how to evaluate the sums

how to evaluate the sums

Explain factor by grouping, Explain Factor by Grouping ? Factoring by g...

Explain Factor by Grouping ? Factoring by grouping is often a good way to factor polynomials of 4 terms or more. (Sometimes it isn't. It doesn't always work. But it's worth try

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd