Greatest common factor, Mathematics

Assignment Help:

Greatest Common Factor

The primary method for factoring polynomials will be factoring the greatest common factor.

While factoring in general it will also be the first thing that we must try as it will frequently simplify the problem.

In order to use this method all that we do is look at all the terms & determine if there is a factor which is in common to all the terms.  If there is, we will factor out polynomial.  Also note that in this matter we are actually only using the distributive law in reverse.  Keep in mind that the distributive law states that

                                                 a (b + c ) = ab + ac

In factoring out the greatest common factor we do this in reverse. We notice down that each of the term has an a in it and thus we "factor" it out utilizing the distributive law in reverse as follows,

ab + ac = a (b + c )


Related Discussions:- Greatest common factor

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Evaluate the area of the region, Evaluate the area of the region. a...

Evaluate the area of the region. a. 478 units 2 b. 578 units 2 c. 528 units 2 d. 428 units 2   b. Refer to the diagram to evaluate the area of the shaded

Cenamatic, a tire placed on a balancing machine in a service station starts...

a tire placed on a balancing machine in a service station starts from rest an d turns through 4.7 revolutions in 1.2 seconds before reaching its final angular speed Calculate its a

Calculus Homework, Find the slope of the line tangent to the graph of f(x)=...

Find the slope of the line tangent to the graph of f(x)= 3-2ln(2x^2+4) at the point (4, F(4))

Math, 3 9/10 into decimal

3 9/10 into decimal

Domain of a vector function - three dimensional space, Domain of a Vector F...

Domain of a Vector Function There is a Vector function of a single variable in R 2 and R 3 have the form, r → (t) = {f (t), g(t)} r → (t) = {f (t) , g(t), h(t)} co

Help!!!, The equation -2x^2-kx-2=0 has two different real soultions. find t...

The equation -2x^2-kx-2=0 has two different real soultions. find the set of possible values for k.

Estimate root of given equations, The positive value of k for which x 2 +K...

The positive value of k for which x 2 +Kx +64 = 0 & x 2 - 8x + k = 0 will have real roots . Ans: x 2 + K x + 64 = 0 ⇒  b 2 -4ac > 0 K 2 - 256 > 0 K

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd