Graph and algebraic methods , Mathematics

Assignment Help:

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour.

a. Sydney drives 10 mi at a certain rate and then drives 20 mi at a rate 5 mi/h faster than the initial rate. Write expressions for the time along each part of the trip. Add these times to write an equation for the total time in terms of the initial rate, ttotal (r) .

b. Determine the reasonable domain and range and describe any discontinuities of ttotal (r) . Graph ttotal (r) on your graphing calculator.

c. At what rate, to the nearest mi/h, must Sydney drive if the entire 30 mi must be covered in about 45 min? Find the answer using the graph and using algebraic methods.

d. How long will Sydney take to drive the entire 30 mi if the car's initial rate varies between 10 mi/h and 20 mi/h? Use the graph and algebraic methods to find the answer.

 


Related Discussions:- Graph and algebraic methods

Alphabet is any arrangement , A word on an alphabet is any arrangement of t...

A word on an alphabet is any arrangement of the letters in the alphabet. For example,ODD, DOD, DOO, DDD are three-letter words on the alphabet {D,O}. How many four-letter words are

Life mathametics, 20% of the total quantity of oil is 40 litres find the to...

20% of the total quantity of oil is 40 litres find the total quantity of oil in litres

Drawn to a circle with center o, From a point P, two tangents PA are drawn ...

From a point P, two tangents PA are drawn to a circle with center O.If OP=diameter of the circle show that triangle APB is equilateral. Ans:    PA=PB (length of tangents

Find out general formula for tangent vector and unit vector, Find out the g...

Find out the general formula for the tangent vector and unit tangent vector to the curve specified by r → (t) = t 2 i → + 2 sin t j → + 2 cos t k → . Solution First,

Boundary value problem, solve the in-homogenous problem where A and b are c...

solve the in-homogenous problem where A and b are constants on 0 ut=uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd