Graph and algebraic methods , Mathematics

Assignment Help:

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour.

a. Sydney drives 10 mi at a certain rate and then drives 20 mi at a rate 5 mi/h faster than the initial rate. Write expressions for the time along each part of the trip. Add these times to write an equation for the total time in terms of the initial rate, ttotal (r) .

b. Determine the reasonable domain and range and describe any discontinuities of ttotal (r) . Graph ttotal (r) on your graphing calculator.

c. At what rate, to the nearest mi/h, must Sydney drive if the entire 30 mi must be covered in about 45 min? Find the answer using the graph and using algebraic methods.

d. How long will Sydney take to drive the entire 30 mi if the car's initial rate varies between 10 mi/h and 20 mi/h? Use the graph and algebraic methods to find the answer.

 


Related Discussions:- Graph and algebraic methods

Probability, Question: There are 6 letters and 6 self addressed envelopes.W...

Question: There are 6 letters and 6 self addressed envelopes.What is the probability that atleast 1 is placed correctly?? Ans: If we let A be the event that letter A is in the cor

Addition and subtraction, In addition and subtraction we have discussed ...

In addition and subtraction we have discussed 1) Some ways of conveying the meaning of the operations of addition and subtraction to children. 2) The different models o

How many inches is the smaller dimension of the decreased, A photographer d...

A photographer decides to decrease a picture she took in sequence to fit it within a certain frame. She requires the picture to be one-third of the area of the original. If the ori

What is the probability of choosing a red ball, Q. What is the probability ...

Q. What is the probability of choosing a red ball? Ans. A box contains a red, blue and white ball. Two are drawn with replacement. (This means that one ball is selected, i

Equivalence class and equivalence relation, 1. For a function f : Z → Z, le...

1. For a function f : Z → Z, let R be the relation on Z given by xRy iff f(x) = f(y). (a) Prove that R is an equivalence relation on Z. (b) If for every x ? Z, the equivalenc

Proof of various integral facts- formulas, PROOF OF VARIOUS INTEGRAL FACTS/...

PROOF OF VARIOUS INTEGRAL FACTS/FORMULAS/PROPERTIES In this section we've found the proof of several of the properties we saw in the Integrals section and also a couple from t

Linear programming , Use the simplex method to solve the following LP Probl...

Use the simplex method to solve the following LP Problem. Max Z = 107x1+x2+2x3 Subject to 14x1+x2-6x3+3x4=7 16x1+x2-6x3 3x1-x2-x3 x1,x2,x3,x4 >=0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd