Geometric progression (g.p.), Mathematics

Assignment Help:

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first term by 'a' but a  basic difference from A.P. is that instead of common difference we have common ratio 'r'. Like d, r remains constant whenever the ratio of any two consecutive terms is computed. The terms of a G.P. are

                   a, ar, ar2, ar3, ar4, ................, arn - 1  

That is,         T1     =     a

                   T2     =     ar

                   T3     =     ar2

                   :                :
                   :                :

                   Tn     =     arn - 1

This is similar to A.P. We take an example to become more familiar with this.

Example 

It is known that the first term in G.P. is 3 and the common ratio r is 2. Find the first three terms of this series and also the nth term.

We know that the first term is given by

                   T1     = a   = 3

                   T2     = ar   = 3.2     = 6

                   T3     = ar2  = 3.2.2 = 12

The nth term is given by  Tn  = arn-1  = 3(2)n-1


Related Discussions:- Geometric progression (g.p.)

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

Integers, students dont retain the topic, hoe to make it easier?

students dont retain the topic, hoe to make it easier?

Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3, For the given...

For the given function recognize the intervals where the function is increasing and decreasing and the intervals where the function is concave up & concave down. Utilizes this info

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprenesamples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers of

Arithmetic sequence, find a30 given that the first few terms of an arithmet...

find a30 given that the first few terms of an arithmetic sequence are given by 6,12,18...

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Negative skewness-measure of central tendency, Negative Skewness It i...

Negative Skewness It is an asymmetrical curve whether the long tail extends to the left NB: In developed countries this frequency curve for the age distribution is charact

Why did the two dice game become more difficult?, The following exercises m...

The following exercises may help you to look more closely at the activities done above. E1) Why did the two dice game become more difficult? E2) Do you find the activities in

What is approximation, approximate value is the precise or the accurate val...

approximate value is the precise or the accurate value which is measured  to the actual value.., approximation is how close the measured value is to the actual value , for example

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd