Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first term by 'a' but a basic difference from A.P. is that instead of common difference we have common ratio 'r'. Like d, r remains constant whenever the ratio of any two consecutive terms is computed. The terms of a G.P. are
a, ar, ar2, ar3, ar4, ................, arn - 1
That is, T1 = a
T2 = ar
T3 = ar2
: : : :
Tn = arn - 1
This is similar to A.P. We take an example to become more familiar with this.
Example
It is known that the first term in G.P. is 3 and the common ratio r is 2. Find the first three terms of this series and also the nth term.
We know that the first term is given by
T1 = a = 3
T2 = ar = 3.2 = 6
T3 = ar2 = 3.2.2 = 12
The nth term is given by Tn = arn-1 = 3(2)n-1
Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm
HOW DO CHILDREN LEARN? : Have you ever tried teaching a young child what "ball" means? Did you do it by a lot of verbal description" Or did you let the child actually handle a b
Test of hypothesis about the population mean When the population standard deviation (S) is identified then the t statistic is defined as t = ¦(x¯ - µ)/ S x¯ ¦
If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5. What is the value of x? The statement, "If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5,
x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.
Adding Rational Expressions with Common Denominators To add or subtract fractions or rational expressions with common denominators, all you do is add or subtract the numerators
r=asin3x
Logarithmic functions have the following general properties If y = log a x, a > 0 and a ≠1, then The domain of the function
i dont understand what my teacher disccussing thats why i want to learn for this lesson. i want to ask'' what is the variables?
Vector Functions We very firstly saw vector functions back while we were looking at the Equation of Lines. In that section we talked about them as we wrote down the equation o
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd