General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

Differences of forward kinematics and inverse kinematics, Question 1: (...

Question 1: (a) Provide a clear explanation of what is ‘rigging' and its use? (b) What are the basic differences of Forward Kinematics (FK) and Inverse Kinematics (IK)? Wh

What are the features of inkjet printers, What are the features of Inkjet p...

What are the features of Inkjet printers?  They can print 2 to 4 pages/minutes. Resolution is about 360d.p.i. Thus better print quality is achieved. The operating

Assumption for diffuse reflection - polygon rendering, Assumption for Diffu...

Assumption for Diffuse Reflection - Polygon Rendering  i) the diffuse reflections by the surface are scattered along with equal intensity in each direction, independent of vie

Drawing program with object- oriented design, For this assignment, you will...

For this assignment, you will add to the drawing program new features that are similar to features that you already have. Apply object-oriented design concepts such as inheritance

Authoring tools in multimedia, Authoring Tools Authoring tools genera...

Authoring Tools Authoring tools generally refers to computer software that assists multimedia developers produce products. Authoring tools are various from computer programmi

Multimedia applications, Multimedia Applications: The term itself clarifies...

Multimedia Applications: The term itself clarifies; this is a combination of various Medias of communication as text, graphic, audio and so on. Currently this field of multimedia i

Project by matlab , I am trying to do a project by matlab. which is related...

I am trying to do a project by matlab. which is related to computer vision. the name of project is (texture synthesis and image quilting), which is inspire from this paper (Efros a

Performing rotation about an axis, Performing rotation about an Axis Fo...

Performing rotation about an Axis For performing rotation about an axis parallel to one of the coordinate axes (say z-axis), you first need to translate the axis (and hence the

Types of bitmap images, Types of Bitmap Images Bitmap images can includ...

Types of Bitmap Images Bitmap images can include any number of colours but we distinguish among four main categories as: 1)      Line-art: These are images that include

Rotation about z-axis - transformation for 3-d rotation, Rotation about z-a...

Rotation about z-axis - Transformation for 3-d rotation Rotation about z-axis is explained by the xy-plane. Suppose a 3-D point P(x,y,z) be rotated to P'(x',y',z') along with

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd