General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

Raster scan display processor, Draw the block diagram of raster scan displa...

Draw the block diagram of raster scan display processor.

Filled-area primitives - output primitives, Filled-Area Primitives  Fil...

Filled-Area Primitives  Filled-area primitives are one of the most important types of primitives used in Computer Graphics.  Basically filled-area primitives are meant to fill

Linking, Linking: A hypermedia system and also information in general cont...

Linking: A hypermedia system and also information in general contains different types of relationships among various information parts. Illustrations of typical relationships comp

B-spline curves - uniform b-splines and de boor algorithm, B-spline curves ...

B-spline curves are piecewise smooth polynomial curves.  B-spline curves are defined over an interval which has been partitioned into sub-intervals. On each subinterval B-sp

Explain about unified memory architecture, Q. Explain about Unified Memory ...

Q. Explain about Unified Memory Architecture? UMA signifies Unified Memory Architecture. It is an architecture that reduces the cost of PC construction.  In this a part of main

Aspect ratio - display devices, Aspect ratio - Display Devices Ratio of...

Aspect ratio - Display Devices Ratio of vertical points to horizontal points necessary to produce equal length lines in both directions on the screen. For example, in a CRT mon

Draw line segment - digital differential analyzer algorithm, Example 1: Dr...

Example 1: Draw line segment from point (2, 4) to (9, 9) by using Digital Differential Analyzer algorithm. Solution: We know usual equation of line is specified via y = mx

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd