General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

Define emissive and non-emissive displays, What do you mean by emissive and...

What do you mean by emissive and non-emissive displays?  The emissive display changes electrical energy into light energy. The plasma panels, thin film electro-luminescent disp

Z- buffer algorithm, Q.   Describe the z- Buffer algorithm for hidden surfa...

Q.   Describe the z- Buffer algorithm for hidden surface removal. Ans. Z- buffer method: This method compares surface depths at each pixel position on the projection plane. T

Explain the process of making of lcd, Explain the process of making of LCD ...

Explain the process of making of LCD An LCD is made with either a passive matrix or an active matrix (a polysilicate layerprovides thin film transistors at each pixel, allowing

Xy-shear about the origin - 2-d and 3-d transformations, xy-Shear about the...

xy-Shear about the Origin - 2-d and 3-d transformations Suppose an object point P(x,y) be moved to P'(x',y') as a outcome of shear transformation in both x- and y-directions a

Write a c-code for a user to draw a polygon object, Write a C-code for an i...

Write a C-code for an interactive program which allows a user to draw a polygon object in a window and then gives various choices of geometric transformations on the polygon.  Once

Important points for designing the animation sequence, Important Points for...

Important Points for Designing the Animation Sequence There are several applications which do not follow this sequence as, real time computer animations generated by vehicle dr

Compute the negative of the image, Obtain an MRI image using the Open Sourc...

Obtain an MRI image using the Open Source internet resources. i. Read the image into Scilab ii. Plot the image iii. Covert it into grayscale image and plot it iv. Find/

Benefits of computer simulation - computer aided design, Benefits of Comput...

Benefits of Computer Simulation The benefit of Simulation is: even for simply solvable linear systems: a uniform model execution technique can be utilized to resolve a large v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd