General perspective transformation, Computer Graphics

Assignment Help:

General Perspective transformation w.r.t. an arbitrary center of projection

Suppose here that the COP is at C(a,b,c), as demonstrated in Figure.

By Figure, the vectors CP and CP' have the simila direction. The vector CP' is a factor of CP, which is CP'=α. CP

Hence, (x'-a)= α.(x-a)                                  z

(y'-b)= α.(y-b)

(z'-c)= α.(z-c)

1163_General Perspective Transformation.png

We know about the projection plane passing via a reference point R0(x0,y0,z0) and consisting a normal vector N= n1I+n2J+n3K, satisfies the subsequent equation:

n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0

When P'(x',y',z') lies upon this plane then we have:

n1.(x'-x0)+n2.(y'-y0)+n3.(z'-z0)=0

now substitute the value of x', y' and z' then we have:

α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c))

=((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c))

=d/(n1.(x-a)+n2.(y-b)+n3.(z-c))

Currently,  d=d0-d1=  (n1.x0+n2.y0+n3.z0) - (n1.a+n2.b+n3.c)  shows  perpendicular distance from center of projection, C to the projection plane.

In order to determine the general perspective transformation matrix so we have to proceed as given here:

Translate COP, C (a, b, c) to the origin.  Now, R'0=(x0-a, y0-b, z0-c) turn sinto the reference point of the translated plane which is normal vector will remain similar.

By applying the general perspective transformation as Pper,N,R'o

Now translate the origin back to C as.

116_General Perspective Transformation 2.png

Here d = N.CR' 0 = d0 - d1 = (n1. x0 + n2. Y0 + n3.z0) - (n1.a+n2.b +n3.c)

= n1. (x0 - a) + n2. (y0 - b) + n3. (z0 - c)

And also d1 = n1.a + n2.b + n3.c


Related Discussions:- General perspective transformation

What is riged body transformation matrix, What is riged body transformation...

What is riged body transformation matrix? Show that the composition lf two rotation is additive by concatenating the matrix representation of r (theta 2 ) = R (theta1 + theta 2 ) t

Shearing - 2-d and 3-d transformations, Shearing - 2-D and 3-D transformati...

Shearing - 2-D and 3-D transformations Shearing transformations are utilized for altering the shapes of 2 or 3-D objects. The consequence of a shear transformation seems like

BINARY, WHAT THAT S MEANS 0001

WHAT THAT S MEANS 0001

Mathematical description of a perspective projection, Mathematical descript...

Mathematical description of a Perspective Projection A perspective transformation is found by prescribing a center of projection and a viewing plane. Let here assume that P(x

What is a dot size, What is a dot size? Dot size may be explained as th...

What is a dot size? Dot size may be explained as the diameter of a single dot on the devices output. Dot size is also known as the Spot size.

Explain what you understand by corporate style guide, Question 1: (a) ...

Question 1: (a) Explain the term ‘logo' with the use of an example. (b) Explain in detail what three basic questions you need to ask yourself before creating a logo. (c) You

Geometric continuity - clipping and 3d primitives, Geometric Continuity ...

Geometric Continuity There is another notion of continuity called geometric continuity. Although the idea existed in differential geometry, the concept was introduced for geome

Assumptions for polygon or area clipping algorithm, Assumptions for Polygon...

Assumptions for Polygon or Area Clipping Algorithm Assumption: The viewport and window are rectangular. So only, by identifying the maximum and the minimum coordinates t

Numerical analysis packages-image processing, Numerical Analysis Packages: ...

Numerical Analysis Packages: generally utilized software is: MatLab. Characteristics: Focus generally on numeric processing. Programming with mathematical skills usuall

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd