General approach of exponential functions, Mathematics

Assignment Help:

General approach of Exponential Functions :Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential function is a function in the form,

                                       f( x ) = b x

Note that we avoid b = 1 since that would give the constant function, f( x ) = 1 .  We ignore

b= 0 as this would also give a constant function and we ignore negative values of b for the following cause. Let's, for a second, assume that we did let b to be negative and look at the given function.

                                        g( x ) = ( -4)x

Let's perform some evaluation.

g( 2)= ( -4)2 =16            g (1/2) =  ( -4)2   =√   -4 = 2i

hence, for some values of x we will obtain real numbers and for other values of x well we get complex numbers.  We desire to avoid this and thus if we require b = 0 this will not be a problem.


Related Discussions:- General approach of exponential functions

Homogeneous differential equation, Assume that Y 1 (t) and Y 2 (t) are two ...

Assume that Y 1 (t) and Y 2 (t) are two solutions to (1) and y 1 (t) and y 2 (t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so, Y

Scatter graphs, Scatter Graphs - A scatter graph is a graph that compr...

Scatter Graphs - A scatter graph is a graph that comprises of points which have been plotted but are not joined through line segments - The pattern of the points will defin

What is inductive reasoning, What is Inductive Reasoning ? Sometimes we...

What is Inductive Reasoning ? Sometimes we draw conclusions based on our observations. If we observe the same results again and again, we conclude that the event always has the

Find the area of shaded region, Find the area of shaded region, if the side...

Find the area of shaded region, if the side of square is 28cm and radius of the sector is ½ the length of side of square.

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

Shares and dividend, A man invests rs.10400 in 6%shares at rs.104 and rs.11...

A man invests rs.10400 in 6%shares at rs.104 and rs.11440 in 10.4% shares at rs.143.How much income would he get in all??

Example of least common denominator, Example of Least Common Denominator: ...

Example of Least Common Denominator: Example: Add 1/7 +2 /3 + 11/12 + 4/6 Solution: Step 1:             Find out primes of each denominator. 7 = 7 (already is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd