Gaussian elimination, Mathematics

Assignment Help:

Example1:  Solve the subsequent system of equations.

-2x1 + x2 - x3 = 4

x1 + 2x2 + 3x3  = 13

3x1 + x3 = -1

Solution

The initial step is to write down the augmented matrix for above system. Keep in mind that coefficients of terms which aren't present are zero.

1471_Gaussian Elimination.png

Here, we want the entries below the main diagonal to be zero. The most main diagonal has been colored red thus we can keep track of it throughout this first illustration.  For reasons which will be apparent eventually we would prefer to find the main diagonal entries to all be ones suitably.

We can find a one in the upper most spot through noticing that if we interchange the first and second row we will find a one in the uppermost spot for free.  Therefore let's do that.

293_Gaussian Elimination1.png

This time we need to find the last two entries as -2 and 3 in the first column to be zero.  We can do this by using the third row operation. Note that if we get 2 times the first row and add this to the second row we will find a zero in the second entry into the first column and if we get -3 times the first row to the third row we will find the 3 to be a zero. We can do both of such operations at similar time so let's do that.

949_Gaussian Elimination2.png

Before proceeding along with the subsequent step, let's ensure that you followed what we just did. Let's see the first operation which we performed. This operation needs to multiply an entry in row 1 with 2 and add it to the consequent entry in row 2 after that replace the old entry in row 2 along with this new entry. The subsequent are the four individual operations which we performed to do this.

2 (1) + (-2) = 0

2 (2) + 1 = 5

2 (3) + (-1) = 5

2 (13) + 4 = 30

 

 

Okay, the subsequent step optional, although again is convenient to do. Technically, the 5th element in the second column is okay to leave. Conversely, it will create our life easier down the road if this is a 1. We can utilize the second row operation to support this. We can divide the entire row with 5. Doing it gives,

1023_Gaussian Elimination3.png

The subsequent step is to then utilize the third row operation to create the -6 in the second column in a zero.

1099_Gaussian Elimination4.png

Here, officially we are complete, but again it's somewhat convenient to find all ones on the main diagonal thus we'll do one last step.

1312_Gaussian Elimination5.png

We can now change back to equations.

2028_Gaussian Elimination6.png

     x1 + 2x2 + 3x3 = 13

⇒              x2 + x3 = 6

                   x3 = 2

At this point the solving is fairly easy.  We find x3 for free and once we find that we can plug it in the second equation and find x2. We can after that use the first equation to find x1. Remember as well that having 1's along the main diagonal helped somewhat along with this process.

The solution to that system of equation is,

x1 = -1

 x2  = 4

 x3  = 2

The process used in this example is termed as Gaussian Elimination.


Related Discussions:- Gaussian elimination

Determines the first four derivatives of y = cos x, Example    determines t...

Example    determines the first four derivatives for following.                                                                  y = cos x Solution: Again, let's just do so

Simultaneous equations, two rolls of carpet cost £574, the first cost £8 pe...

two rolls of carpet cost £574, the first cost £8 per meter, the second which is 7m longer costs £7 p/m. how many meters are there in each roll

Polynomials, zeroes of polynomial 2x2-3x-2

zeroes of polynomial 2x2-3x-2

Solve the following word problems, 1.   The length of a rectangle is 2 time...

1.   The length of a rectangle is 2 times its width.  The area of the rectangle is 72          square inches. Find the dimensions of the rectangle.   2.   The length of a rec

Geometric applications to the cross product, Geometric Applications to the ...

Geometric Applications to the Cross Product There are a so many geometric applications to the cross product also.  Assume we have three vectors a → , b → and c → and we make

Quantitative analysis, Suppose the economy is now ‘open’ and thus has an ex...

Suppose the economy is now ‘open’ and thus has an external demand (e.g. from the government, exports, etc.) of the dollar amounts for each respective industry. In the latest budget

Calculus, I need help with my calculus

I need help with my calculus

How many cubic centimetres of cork dust will be required?, A cylindrical ve...

A cylindrical vessel of diameter 14 cm and height 42 cm is fixed symmetrically inside a similar vessel of diameter 16 cm and height 42 cm. The total space between two vessels is fi

Scatter graphs, Scatter Graphs - A scatter graph is a graph that compr...

Scatter Graphs - A scatter graph is a graph that comprises of points which have been plotted but are not joined through line segments - The pattern of the points will defin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd