Gaussian elimination, Mathematics

Assignment Help:

Example1:  Solve the subsequent system of equations.

-2x1 + x2 - x3 = 4

x1 + 2x2 + 3x3  = 13

3x1 + x3 = -1

Solution

The initial step is to write down the augmented matrix for above system. Keep in mind that coefficients of terms which aren't present are zero.

1471_Gaussian Elimination.png

Here, we want the entries below the main diagonal to be zero. The most main diagonal has been colored red thus we can keep track of it throughout this first illustration.  For reasons which will be apparent eventually we would prefer to find the main diagonal entries to all be ones suitably.

We can find a one in the upper most spot through noticing that if we interchange the first and second row we will find a one in the uppermost spot for free.  Therefore let's do that.

293_Gaussian Elimination1.png

This time we need to find the last two entries as -2 and 3 in the first column to be zero.  We can do this by using the third row operation. Note that if we get 2 times the first row and add this to the second row we will find a zero in the second entry into the first column and if we get -3 times the first row to the third row we will find the 3 to be a zero. We can do both of such operations at similar time so let's do that.

949_Gaussian Elimination2.png

Before proceeding along with the subsequent step, let's ensure that you followed what we just did. Let's see the first operation which we performed. This operation needs to multiply an entry in row 1 with 2 and add it to the consequent entry in row 2 after that replace the old entry in row 2 along with this new entry. The subsequent are the four individual operations which we performed to do this.

2 (1) + (-2) = 0

2 (2) + 1 = 5

2 (3) + (-1) = 5

2 (13) + 4 = 30

 

 

Okay, the subsequent step optional, although again is convenient to do. Technically, the 5th element in the second column is okay to leave. Conversely, it will create our life easier down the road if this is a 1. We can utilize the second row operation to support this. We can divide the entire row with 5. Doing it gives,

1023_Gaussian Elimination3.png

The subsequent step is to then utilize the third row operation to create the -6 in the second column in a zero.

1099_Gaussian Elimination4.png

Here, officially we are complete, but again it's somewhat convenient to find all ones on the main diagonal thus we'll do one last step.

1312_Gaussian Elimination5.png

We can now change back to equations.

2028_Gaussian Elimination6.png

     x1 + 2x2 + 3x3 = 13

⇒              x2 + x3 = 6

                   x3 = 2

At this point the solving is fairly easy.  We find x3 for free and once we find that we can plug it in the second equation and find x2. We can after that use the first equation to find x1. Remember as well that having 1's along the main diagonal helped somewhat along with this process.

The solution to that system of equation is,

x1 = -1

 x2  = 4

 x3  = 2

The process used in this example is termed as Gaussian Elimination.


Related Discussions:- Gaussian elimination

Ratios, a muffin recipe calls for three forth of a cup of sugar and one eig...

a muffin recipe calls for three forth of a cup of sugar and one eight of a cup of butter. travis accidentally put in one whole cup of butter. how much sugar does travis need to put

Functions of limits, Following is some more common functions that are "nice...

Following is some more common functions that are "nice enough". Polynomials are nice enough for all x's. If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provid

Share and dividend, to use newspaper and report on share and dividend

to use newspaper and report on share and dividend

Partial fraction decomposition - integration techniques, Partial Fraction D...

Partial Fraction Decomposition The procedure of taking a rational expression and splitting down it into simpler rational expressions which we can add or subtract to get the ori

If there are 75 students in the play how many are boys, 64% of the students...

64% of the students within the school play are boys. If there are 75 students in the play, how many are boys? To ?nd out 64% of 75, multiply 75 by the decimal equivalent of 64%

Evaluate the volume of cylinder, If the diameter of a right cylinder is dou...

If the diameter of a right cylinder is doubled and the height is tripled, its volume is a. multiplied by 12. b. multiplied by 2. c. multiplied by 6 d. multiplied by 3.

Proof of sum-difference of two functions, Proof of Sum/Difference of Two Fu...

Proof of Sum/Difference of Two Functions : (f(x) + g(x))′  = f ′(x) +  g ′(x)  It is easy adequate to prove by using the definition of the derivative.  We will start wi

Introduction to the normal distribution, Q. Introduction to the Normal Dist...

Q. Introduction to the Normal Distribution? Ans. The Binomial distribution is a model for what might happen in the future for a discrete random variable. The Normal Distri

#titlealgebra.., help solve these type equations.-4.1x=-4x+4.5

help solve these type equations.-4.1x=-4x+4.5

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd