Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Find the third vertex of equilateral triangle, If two vertices of an equila...

If two vertices of an equilateral triangle are (0, 0) and (3, 0), find the third vertex. [Ans: 3/2 , 3/√ 3/2  or 3/2, -3√ 3/2] Ans:    OA = OB = AB OA 2 = OB 2 = AB 2

If oa = ob = 14cm, If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded r...

If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded region.  (Ans:21cm 2 ) Ans:    Area of the shaded region = Area of ? AOB - Area of Semi Circle = 1/2  x 14 x

Circles, alternate segment theorum

alternate segment theorum

Example of division of fractions, Example of division of fractions: E...

Example of division of fractions: Example: (4/5)/(2/9) = Solution: Step 1:             Invert the divisor fraction (2/9) to (9/2). Step 2:             Multip

How mathematical ideas grow, HOW MATHEMATICAL IDEAS GROW :  In this sectio...

HOW MATHEMATICAL IDEAS GROW :  In this section we shall consider three aspects of the nature of mathematical ideas, namely, that they progress from concrete to abstract, from part

Algebra, sir/madam, i abdulla working as a maths teacher want to join ur es...

sir/madam, i abdulla working as a maths teacher want to join ur esteemed organisation as a tutor how can i proceed i have created an account even pls guide me, thanks abdulla

Basic mathematics, I need help with my homework, I am to the edge right now...

I need help with my homework, I am to the edge right now with this w=5pq/2

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx...

y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx = (a^x)(lnx)f''(a^x), .........(1) but f(sinx) = lnx implies f(x) = ln(arcsinx) hence f''(x) = (1/arcsinx) (1/ ( ( 1-x

Lognormal distribution, The Lognormal Distribution If ln(X) is a normal...

The Lognormal Distribution If ln(X) is a normally distributed random variable, then X is said to be a lognormal variable. If P1, P2, P3, ... are the prices of a scrip in per

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd