Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Solve the differential equation, Solve the subsequent differential equation...

Solve the subsequent differential equation and find out the interval of validity for the solution. Let's start things off along with a fairly simple illustration so we can notic

E is irrational, If e were rational, then e = n/m for some positive integer...

If e were rational, then e = n/m for some positive integers m, n. So then 1/e = m/n. But the series expansion for 1/e is 1/e = 1 - 1/1! + 1/2! - 1/3! + ... Call the first n v

Evaluating the function at the point of limit, Calculate the value of the f...

Calculate the value of the following limit. Solution: This first time through we will employ only the properties above to calculate the limit. Firstly we will employ prop

Ecercises, ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te...

ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te ndertoje nje kuboide me permasa 20cm,25cm,40cm. a mund ta realizoje kete, ne qofte se per prerjet dhe ngjitjet humb

Function that computes the product of two matrices, Write a function that c...

Write a function that computes the product of two matrices, one of size m × n, and the other of size n × p. Test your function in a program that passes the following two matrices t

Inequalality, the low temperature in onw city was -4degrees Fahrenheit. The...

the low temperature in onw city was -4degrees Fahrenheit. The low temperature in another city was 8degrees Fahrenheit. what is an inequality to compare those temperatures

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

Geometry, Can two lines contain a given point

Can two lines contain a given point

Question, Hi I have a maths question related to construction as its a cons...

Hi I have a maths question related to construction as its a construction management course...i could send some example sheets too...could it be done?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd