Fundamental theorem of calculus, part ii, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

                                ∫baf ( x ) dx = F ( x )|b a= F (b ) - F ( a )

Recall that while we talk regarding an anti-derivative for a function we are actually talking regarding the indefinite integral for the function.  Therefore, to evaluate definite integral the first thing which we're going to do is evaluate the indefinite integral for the function. It should describe the likeness in the notations for the indefinite & definite integrals.

Also notice that we need the function to be continuous within the interval of integration. It was also needs in the definition of the definite integral.

Next let's address the fact that we can utilize any anti-derivative of f ( x ) in the evaluation.  Let's take an ultimate look at the given integral.

                                                 ∫0 2 x2  + 1dx

Both are anti-derivatives of the integrand.

F ( x ) = 1/3 x3 + x                     and            F ( x ) = (1/3) x3 + x - (18/31)

By using the FToC to evaluate this integral along with the first anti-derivatives gives,

734_Fundamental Theorem5.png

=(1/3) (2)3 + 2- ( (1/3)(0) 3 +0)

= 14 /3

Much easier than utilizing the definition wasn't it? Now let's utilizes the second anti-derivative to evaluate this definite integral.

1676_Fundamental Theorem6.png

= (1/3) ( 2)3 + 2 - 18 /31- ( 1/3 (0)3 + 0 - 18/31)

 =(1/3)(2)3+2-(18/31)-((1/3)(0)3+0-(18/31))

=14/3 - 18/31 + 18/31 = 14/3

The constant which we tacked onto the second anti-derivative canceled out in the evaluation step.  Thus, while choosing the anti-derivative to utilizes in the evaluation procedure make your life simpler and don't bother with the constant as it will just end up canceling in the long run.

Also, note as well that we're going to contain to be very careful with minus signs and parenthesis along these problems.  It's extremely easy to get in hurry & mess them up.

Let's begin our examples along with the following set designed to create a couple of quick points that are extremely important.

Example Evaluate following.

(a)   ∫ 2 (1) y 2 + y -2  dy

(b)   ∫ 2 (-1) y 2 + y -2  dy

 

(a) 202_Fundamental Theorem7.png

Following is the integral,

 

      =( 1/3) 2 3 - (1/2)-((1/3)(1)3-(1/1))

     =(8/3)-(1/2)-(1/3)+(1)

     =(17/6)

(a)    ∫ 2 (-1) y 2 + y -2  dy

This integral is to make a point. To do an integral the integrand has to be continuous in the range of the limits.  In this case the second term will have division by zero at y = 0 and as y = 0 is in the interval of integration, that means it is among the lower & upper limit, this integrand is not continuous in the interval of integration & thus we can't do this integral.

Note as well that this problem will not stop us from doing the integral in (b) as y = 0 is not in the interval of integration.


Related Discussions:- Fundamental theorem of calculus, part ii

Mean and standard deviation , A professor is interested in decisive if atte...

A professor is interested in decisive if attending college influences the level at which an individual cooperates with the police. The professor is not sure  if attending college w

Standard interpretations to derivatives, Standard interpretations to deriva...

Standard interpretations to derivatives Example   Assume that the amount of money in a bank account is specified by                                       P (t ) = 500 + 10

Lesson 6 Homework Practice, For every girl taking classes at the martial ar...

For every girl taking classes at the martial arts school there are 3 boys who are taking classes at the school. If there are 236 students taking classes write and solve a proportio

Determine the matrix that performs a horizontal compression, (a) Determine ...

(a) Determine the matrix that first rotates a two-dimensional vector 180° anticlockwise, and then per- forms a horizontal compression of the resulting vector by a factor 1/2 (leavi

Monotonic, Monotonic, Upper bound and lower bound Given any sequence {a...

Monotonic, Upper bound and lower bound Given any sequence {a n } we have the following terminology: 1.   We call or denote the sequence increasing if a n n+1 for every n.

Fermats last theorem, Explain Fermats Last Theorem? How to solve problems u...

Explain Fermats Last Theorem? How to solve problems under Fermats Last Theorem?

Rates of change or instantaneous rate of change, Rates of Change or instant...

Rates of Change or instantaneous rate of change ; Now we need to look at is the rate of change problem.  It will turn out to be one of the most significant concepts . We will c

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

Linear programming, what is the advantage of dual linear problem programmin...

what is the advantage of dual linear problem programming when we maximize profit then what is need to minimize cost of the same problem

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd