Fundamental theorem of calculus, part ii, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

                                ∫baf ( x ) dx = F ( x )|b a= F (b ) - F ( a )

Recall that while we talk regarding an anti-derivative for a function we are actually talking regarding the indefinite integral for the function.  Therefore, to evaluate definite integral the first thing which we're going to do is evaluate the indefinite integral for the function. It should describe the likeness in the notations for the indefinite & definite integrals.

Also notice that we need the function to be continuous within the interval of integration. It was also needs in the definition of the definite integral.

Next let's address the fact that we can utilize any anti-derivative of f ( x ) in the evaluation.  Let's take an ultimate look at the given integral.

                                                 ∫0 2 x2  + 1dx

Both are anti-derivatives of the integrand.

F ( x ) = 1/3 x3 + x                     and            F ( x ) = (1/3) x3 + x - (18/31)

By using the FToC to evaluate this integral along with the first anti-derivatives gives,

734_Fundamental Theorem5.png

=(1/3) (2)3 + 2- ( (1/3)(0) 3 +0)

= 14 /3

Much easier than utilizing the definition wasn't it? Now let's utilizes the second anti-derivative to evaluate this definite integral.

1676_Fundamental Theorem6.png

= (1/3) ( 2)3 + 2 - 18 /31- ( 1/3 (0)3 + 0 - 18/31)

 =(1/3)(2)3+2-(18/31)-((1/3)(0)3+0-(18/31))

=14/3 - 18/31 + 18/31 = 14/3

The constant which we tacked onto the second anti-derivative canceled out in the evaluation step.  Thus, while choosing the anti-derivative to utilizes in the evaluation procedure make your life simpler and don't bother with the constant as it will just end up canceling in the long run.

Also, note as well that we're going to contain to be very careful with minus signs and parenthesis along these problems.  It's extremely easy to get in hurry & mess them up.

Let's begin our examples along with the following set designed to create a couple of quick points that are extremely important.

Example Evaluate following.

(a)   ∫ 2 (1) y 2 + y -2  dy

(b)   ∫ 2 (-1) y 2 + y -2  dy

 

(a) 202_Fundamental Theorem7.png

Following is the integral,

 

      =( 1/3) 2 3 - (1/2)-((1/3)(1)3-(1/1))

     =(8/3)-(1/2)-(1/3)+(1)

     =(17/6)

(a)    ∫ 2 (-1) y 2 + y -2  dy

This integral is to make a point. To do an integral the integrand has to be continuous in the range of the limits.  In this case the second term will have division by zero at y = 0 and as y = 0 is in the interval of integration, that means it is among the lower & upper limit, this integrand is not continuous in the interval of integration & thus we can't do this integral.

Note as well that this problem will not stop us from doing the integral in (b) as y = 0 is not in the interval of integration.


Related Discussions:- Fundamental theorem of calculus, part ii

Discrete-time signal, Determine the fundamental period of the following dis...

Determine the fundamental period of the following discrete-time signal: X(n) = 2sin(4n)π +π/4) + 5sin16n +4sin (20n +π/3)

Graph all four vectors on similar axis system, The vector a → =(2,4) compu...

The vector a → =(2,4) compute 3a → , ½ a → and -2a → . Graph all four vectors on similar axis system. Solution: Now here are the three scalar Multiplication 3a → = (6,

Calculus online, need help completing my online text. can provide login det...

need help completing my online text. can provide login details

Tangents, find a common tangent to two circles

find a common tangent to two circles

Pi, pi to the ten-thousandths

pi to the ten-thousandths

Prove that a simple graph is connected, Prove that a simple graph is connec...

Prove that a simple graph is connected if and only if it has a spanning tree.    Ans: First assume that a simple graph G has a spanning  tree T.  T consists of every node of G.

Regrouping, in regrouping if we have abig number in the end what should i d...

in regrouping if we have abig number in the end what should i do?add an number on top of it,please help

Explain the rules of divisibility, Explain the rules of Divisibility ? ...

Explain the rules of Divisibility ? Divisible by 2: If the last digit is a 0, 2, 4, 6, or 8, the number is evenly divisible by 2. Divisible by 2 Not

Equal-sharing-categories of situations requiring division , Equal-sharing ...

Equal-sharing - situations in which we need to find out how much each portion Multiplication and Division contains when a given quantity is shared out into a number of equal porti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd