Fundamental theorem of calculus, part ii, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

                                ∫baf ( x ) dx = F ( x )|b a= F (b ) - F ( a )

Recall that while we talk regarding an anti-derivative for a function we are actually talking regarding the indefinite integral for the function.  Therefore, to evaluate definite integral the first thing which we're going to do is evaluate the indefinite integral for the function. It should describe the likeness in the notations for the indefinite & definite integrals.

Also notice that we need the function to be continuous within the interval of integration. It was also needs in the definition of the definite integral.

Next let's address the fact that we can utilize any anti-derivative of f ( x ) in the evaluation.  Let's take an ultimate look at the given integral.

                                                 ∫0 2 x2  + 1dx

Both are anti-derivatives of the integrand.

F ( x ) = 1/3 x3 + x                     and            F ( x ) = (1/3) x3 + x - (18/31)

By using the FToC to evaluate this integral along with the first anti-derivatives gives,

734_Fundamental Theorem5.png

=(1/3) (2)3 + 2- ( (1/3)(0) 3 +0)

= 14 /3

Much easier than utilizing the definition wasn't it? Now let's utilizes the second anti-derivative to evaluate this definite integral.

1676_Fundamental Theorem6.png

= (1/3) ( 2)3 + 2 - 18 /31- ( 1/3 (0)3 + 0 - 18/31)

 =(1/3)(2)3+2-(18/31)-((1/3)(0)3+0-(18/31))

=14/3 - 18/31 + 18/31 = 14/3

The constant which we tacked onto the second anti-derivative canceled out in the evaluation step.  Thus, while choosing the anti-derivative to utilizes in the evaluation procedure make your life simpler and don't bother with the constant as it will just end up canceling in the long run.

Also, note as well that we're going to contain to be very careful with minus signs and parenthesis along these problems.  It's extremely easy to get in hurry & mess them up.

Let's begin our examples along with the following set designed to create a couple of quick points that are extremely important.

Example Evaluate following.

(a)   ∫ 2 (1) y 2 + y -2  dy

(b)   ∫ 2 (-1) y 2 + y -2  dy

 

(a) 202_Fundamental Theorem7.png

Following is the integral,

 

      =( 1/3) 2 3 - (1/2)-((1/3)(1)3-(1/1))

     =(8/3)-(1/2)-(1/3)+(1)

     =(17/6)

(a)    ∫ 2 (-1) y 2 + y -2  dy

This integral is to make a point. To do an integral the integrand has to be continuous in the range of the limits.  In this case the second term will have division by zero at y = 0 and as y = 0 is in the interval of integration, that means it is among the lower & upper limit, this integrand is not continuous in the interval of integration & thus we can't do this integral.

Note as well that this problem will not stop us from doing the integral in (b) as y = 0 is not in the interval of integration.


Related Discussions:- Fundamental theorem of calculus, part ii

The coordinate axes, Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly sta...

Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly state all the properties you have used for tracing it(e.g., symmetry about the axes, symmetry about the origin, points of interse

Terminology of polynomial, Terminology of polynomial Next we need to ge...

Terminology of polynomial Next we need to get some terminology out of the way. Monomial polynomial A monomial is a polynomial which consists of exactly one term.

Three dimensional spaces - calculus, Three Dimensional Spaces In this ...

Three Dimensional Spaces In this section we will start taking a much more detailed look at 3-D space or R 3 ).  This is a major topic for mathematics as a good portion of Calc

Cylinder, #question Show that the enveloping cylinder of the conicoid ax 2 ...

#question Show that the enveloping cylinder of the conicoid ax 2 + by 2 + cz 2 = 1 with generators perpendicular to the z-axis meets the plane z = 0 in parabolas

Determine the head loss, A 3 km pipe starts from point A end at point B ...

A 3 km pipe starts from point A end at point B Population = 3000 people Q = 300 L/day/person Roughness = cast ion pipe Length of the pipe = 3km Case 1 From A to B

Expert , i want to work with you, please guide me

i want to work with you, please guide me

How to converting fractions to decimals explain with example, How to Conver...

How to Converting Fractions to Decimals explain with example? To convert fractions to decimals, divide the numerator by the denominator. The quotient is the decimal. Ex

Real number, if HCFof 657 and 963 is expressable in the form of 657x+963x-1...

if HCFof 657 and 963 is expressable in the form of 657x+963x-15findx

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd