Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Solution of rectilinear figures, A tower and a monument stand on a level pl...

A tower and a monument stand on a level plane. the angles of depression on top and bottom of the monument viewed from the top of the tower are 13 degrees and 31 degrees, respective

Write triangles named by the lengths of their sides, Write Triangles Named ...

Write Triangles Named by the Lengths of Their Sides? An equilateral triangle is a triangle with three congruent sides. All three sides of this triangle are the same lengt

Statistics, if the sum of mean and variance of a binomial distribution is ...

if the sum of mean and variance of a binomial distribution is 4.8 for five trials, the distribution

The sum of two consecutive integers is 41 integer, The sum of two consecuti...

The sum of two consecutive integers is 41. What are the integers? Two consecutive integers are numbers in sequence like 4 and 5 or -30 and -29, that are each 1 number apart. Le

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Real numbers on every line, Make a file called "testtan.dat" which has 2 li...

Make a file called "testtan.dat" which has 2 lines, with 3 real numbers on every line (some negative, some positive, in the range from-1 to 3).  The file can be formed from the edi

Play and learn maths, PLAY AND LEARN :  Children can learn many basic math...

PLAY AND LEARN :  Children can learn many basic mathematical concepts through games. They enjoy Mathematical concepts can be playing within familiar contexts. Their games also gen

The mean value theorem, The Mean Value Theorem : In this section we will ...

The Mean Value Theorem : In this section we will discuss the Mean Value Theorem.  Before we going through the Mean Value Theorem we have to cover the following theorem. Ro

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd