Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

Maths Assignment, Hi, I really need an idea and a layout on where i should ...

Hi, I really need an idea and a layout on where i should take my Maths assignment. This is for Year 12, and i want to focus on Maths in Music. It has to be at least 6 to 12 pages l

Explain basic concepts of parallel lines, Explain Basic Concepts of Paralle...

Explain Basic Concepts of Parallel Lines ? Parallel lines are defined in section 1.2 and we use "//" to denote it. From the definition, we can get the following two consequenc

Numerical analysis, Please,I Want to know and study for stability on predi...

Please,I Want to know and study for stability on predictor -corrector for numerical integration method

#title.algebra., how do i understand algebra? whats the formula i just dont...

how do i understand algebra? whats the formula i just dont get it

Equations with finding principals, I need help solving principal equations ...

I need help solving principal equations where interest,rate,and time are given.

Write a procedure to obtain the inverse of a matrix, Write a procedure to o...

Write a procedure to obtain the inverse of an n by n matrix usingGaussian elimination. (You cannot use A - 1 or any of the built-in packages like 'MatrixInverse'.) Output any a

Statistics, Calculate the Kendaul''s correlation cofficient for a given dat...

Calculate the Kendaul''s correlation cofficient for a given data.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd