Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Equivalent fractions and area models, Need two equal fractions multiply an...

Need two equal fractions multiply and divide 1/6 3/4 5/15 2/7 20/25 24/36 4/9

common divisors greater than one, Let R be the relation on Z + defined by...

Let R be the relation on Z + defined by aRb iff gcd(a; b) = 1 (that is, a and b have no common divisors greater than one). Explain whether R is reflexive, irreflexive, symmetri

Factor Fiction, Ok this is true or false wit a definition. The GCF of a pai...

Ok this is true or false wit a definition. The GCF of a pair of numbers can never be equal to one of the numbers.

One of these food groups, In a collection of 30 dissimilar birds, 15 eat wo...

In a collection of 30 dissimilar birds, 15 eat worms, 18 eat fruit, and 12 eat seeds. Accurately 8 eat worms and seeds, 8 eat worms and fruit, 7 eat fruit and seeds, and 4 eat each

Find the laplace transforms of functions, Find the Laplace transforms of th...

Find the Laplace transforms of the specified functions. (a)   f(t) = 6e 5t + e t3 - 9 (b)   g(t) = 4cos(4t) - 9sin(4t) + 2cos(10t) (c)    h(t) = 3sinh(2t) + 3sin(2t)

Correlation and regression, 1. Using given data set (Assignment_1data in th...

1. Using given data set (Assignment_1data in the folder) a) Make scatterplot between "Years since first marriage" and "Total children ever born" b) Make scatterplot between

Argument, what is the difference between argument and principle argument

what is the difference between argument and principle argument

Straight Line, can i known the all equations under this lesson with explana...

can i known the all equations under this lesson with explanations n examples. please..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd