Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Which of the subsequent binomials could represent the length, The area of a...

The area of a rectangle is represented through the trinomial: x 2 + x - 12. Which of the subsequent binomials could represent the length and width? Because the formula for the

Second order differential equation, Write the subsequent 2nd order differen...

Write the subsequent 2nd order differential equation as a system of first order, linear differential equations. 2 y′′ - 5 y′ + y = 0  y (3) = 6  y′ (3) = -1  We can wri

#title., Julia must do a 70:30 split of all of her profits with the Departm...

Julia must do a 70:30 split of all of her profits with the Department of Athletics. Julia also has the ability to sell soft drinks. If she decide to sell soft drinks, she must agre

Measurement story problem, Seth has a pet goldfish. When he got his goldfis...

Seth has a pet goldfish. When he got his goldfish , it was only 5 centimeters long . Now it has grown to be 92 millimeters long. How many millimeters has the goldfish grown since

Binding constraints for the original linear program model, A toy company pr...

A toy company produces 2 models of water guns: spray king and zapper. They are manufactured in batches for easier packaging and sale. Two of the limiting resources are 1200 pounds

Binomial mathematical properties, Binomial Mathematical Properties 1. ...

Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =

Objectives of helping children learn mathematics, Objectives After stud...

Objectives After studying this leaarn maths; you should be able to explain why a teacher needs to know the level of development of hi; her learners; identify the way

Hcf and lcm, The HCF & LCM of two expressions are respectively (x+3) and (x...

The HCF & LCM of two expressions are respectively (x+3) and (x cube-7x+6). If one is x square+2x-3 , other is? Solution) (x+3) * (x^3-7x+6) = (x^2+2x-3) * y      ( ) (HCF*LCM=

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd