Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Group automorphism, (a) Find an example of groups G, H, K with K  H and H...

(a) Find an example of groups G, H, K with K  H and H G but K G. (b) A subgroup H of G is characteristic if σ(H) ⊆ H for every group automorphism σ of G. Show that eve

..Job, Eddie mkes $15.75 per hour. Estimate how much Eddie will make per ye...

Eddie mkes $15.75 per hour. Estimate how much Eddie will make per year if he works 40 hours per week and 50 weeks per year.

Correlation and regression, Correlation and Regression CORRELATION is ...

Correlation and Regression CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of studying correla

Prove that if x is a real number then [2x] = [x] + [x + ½ ], Prove that if...

Prove that if x is a real number then [2x] = [x] + [x + ½ ] Ans: Let us consider x be any real number. It comprises two parts: integer and fraction. With no loss of

How to find value in polynomial?, Example  Find the values of the ...

Example  Find the values of the given expressions. Also given that a = 2, b = 3, c = 1, and x = 2. 8a + 5bc          =       8.2

Algebra, can I access algebra videos?

can I access algebra videos?

Eigenvalues and eigenvectors, If you find nothing out of this rapid review ...

If you find nothing out of this rapid review of linear algebra you should get this section.  Without this section you will not be capable to do any of the differential equations wo

Estimate how much should every friend pay, A group of ?ve friends gone out ...

A group of ?ve friends gone out to lunch. The total bill for the lunch was $53.75. Their meals all cost about the similar, so they needed to split the bill evenly. Without consider

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd