Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Give the definition of logarithms, Give the Definition of Logarithms ? ...

Give the Definition of Logarithms ? A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = ay, then log a x = y.

Determine radicals in exponent form, Evaluate following.               ...

Evaluate following.                √16 and Solution To evaluate these first we will convert them to exponent form and then evaluate that since we already know how to

Formular for x and y, I have a simple right angle triangle. All I am given...

I have a simple right angle triangle. All I am given is h (the hypotenuse) and that ratio of x:y is 2:3. What is the formula to find x and y in terms of h?

Consumer behaviour.., consumer behaviour in my feild of studies accounting ...

consumer behaviour in my feild of studies accounting ..

SOLUTIONS.., bunty and bubly go for jogging every morning. bunty goes aroun...

bunty and bubly go for jogging every morning. bunty goes around a square park of side 80m and bubly goes around a rectangular park with length 90m and breadth 60m.if they both take

Laws of set algebra, Laws of Set Algebra From the given Venn diagram w...

Laws of Set Algebra From the given Venn diagram where T is the universal set and A its subset that we can deduce a number of laws as: i. A υ Ø = A ii. A υ T = T

Perceny, 72 is 75% what number

72 is 75% what number

Evaluate the slope of the tangent line, Evaluate the given limits, showing ...

Evaluate the given limits, showing all working: Using first principles (i.e. the method used in Example 1, Washington 2009, Using definition to find derivative ) find the

Cartesian product-categories of multiplication, Cartesian product - situat...

Cartesian product - situations in which the total number of ordered pairs (or triples, or ...) are do be found. (e.g., if Hari makes 'dosas' of 3 different sizes, with 4 different

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd