Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

How much time does larry spend on his dog each day, Larry spends 3/4 hour t...

Larry spends 3/4 hour twice a day walking and playing with his dog. He also spends 1/6 hour twice a day feeding his dog. How much time does Larry spend on his dog each day? Add

Elliptic paraboloid - three dimensional spaces, Elliptic Paraboloid Th...

Elliptic Paraboloid The equation which is given here is the equation of an elliptic paraboloid. x 2 /a 2 + y 2 /b 2 = z/c Like with cylinders this has a cross section

Identify the flaw in the argument, Identify the flaw in the following argum...

Identify the flaw in the following argument which supposedly determines that n 2 is even when n is an even integer. As well name the reasoning:             Assume that n 2 is

Number and operations, 1a.if the williams spend $385 a month on food what i...

1a.if the williams spend $385 a month on food what is their monthly income

Constant aceleration formulae, a car comes to a stop from a speed of 30m/s ...

a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p

Sciencetific notations, how would you answer a question like this on here ...

how would you answer a question like this on here (8x10^5)

Determine radicals in exponent form, Evaluate following.               ...

Evaluate following.                √16 and Solution To evaluate these first we will convert them to exponent form and then evaluate that since we already know how to

Comperative statics, Discuss comparative statics,Market model and Nationa i...

Discuss comparative statics,Market model and Nationa income model

Combination, Combination A combination is a group of times whether ord...

Combination A combination is a group of times whether order is not significant. For a combination to hold at any described time it must comprise of the same items however i

Stats, Instructions: 1. Write the null and alternative hypotheses. ...

Instructions: 1. Write the null and alternative hypotheses. 2. Calculate the test statistic. 3. Determine the critical value whether or not there has been an improv

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd