Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Properties of exponential form, Properties 1.   The domain of the logar...

Properties 1.   The domain of the logarithm function is (0, ∞ ) .  In other terms, we can just plug positive numbers into a logarithm! We can't plug in zero or a negative numbe

Evaluate the definite integral, Evaluate the given definite integral. ...

Evaluate the given definite integral. Solution                      Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be c

Real numbers on every line, Make a file called "testtan.dat" which has 2 li...

Make a file called "testtan.dat" which has 2 lines, with 3 real numbers on every line (some negative, some positive, in the range from-1 to 3).  The file can be formed from the edi

Example of the commutative property of addition, Tori was asked to provide ...

Tori was asked to provide an example of the commutative property of addition. Which of the subsequent choices would be correct? Using the simple interest formula Interest = pr

Word problem, A computer is programmed to scan the digits of the counting n...

A computer is programmed to scan the digits of the counting numbers.For example,if it scans 1 2 3 4 5 6 7 8 9 10 11 12 13 then it has scanned 17 digits all together. If the comput

Ratios, the ratio of boys to girls in the sixth grade is 2:3 if there are ...

the ratio of boys to girls in the sixth grade is 2:3 if there are 24 boys, how many are girls?

Diferential equations, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Statistic, Suppose that the probability of your favorite baseball player ge...

Suppose that the probability of your favorite baseball player getting a hit at bat is 0.45. Assume that each at bat is independent. What is the probability that he bats eight times

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd