Fundamental theorem of calculus, part i, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

As noted through the title above it is only the first part to the Fundamental Theorem of Calculus.

The first part of this theorem us how to differentiate assured types of definite integrals and this also tells us regarding the very close relationship among integrals & derivatives.

Fundamental Theorem of Calculus, Part I

If  f ( x )is continuous on [a,b] then,

                                           g ( x ) = ∫ax f (t ) dt

is continuous on [a,b] and this is differentiable on ( a, b ) and that,

                                             g ′ ( x ) = f ( x )

An alternate notation for derivative portion of this is following,

531_Fundamental Theorem.png

Example   Differentiate following.

2254_Fundamental Theorem1.png

 Solution

This one needed a little work before we can use the Fundamental Theorem of Calculus. The primary thing to notice is that the FToC needs the lower limit to be a constant & the upper limit to be the variable.  Therefore, by using a property of definite integrals we can interchange the limits of the integral we only have to remember to add in a minus sign after we do that.  Doing this we get,

293_Fundamental Theorem2.png

The next thing to notify is that the FToC also need an x in the upper limit of integration and we've got x2. To do this derivative we're going to required the following version of the  chain rule.

                           d/dx ( g (u )) = d/dx ( g (u ))( du/dx)            where u = f ( x )

Thus, if we let u= x2 we utilizes the chain rule to get,

1429_Fundamental Theorem3.png

                          =  -d/du ∫u1    (t4+1)/(t2+1)dt                                  where u = x2

                        = (u4+1)/(u2+1) (2x)

                         = -2 x ((u4+1)/(u2+1))

The last step is to get everything back in terms of x.

1448_Fundamental Theorem4.png

= -2x (( x2 )4  + 1)/ (x2 )2  + 1

= -2x(( x8+ 1)/ (x4+ 1)


Related Discussions:- Fundamental theorem of calculus, part i

Example of developing estimation skills, There are a variety of strategies ...

There are a variety of strategies that people use for developing this ability. For instance, while adding 1821,695 and 250, a person could estimate it mentally i) by rounding of

Theorem, #question if two angles of a triangle are unequal in measure then ...

#question if two angles of a triangle are unequal in measure then the side opposite to greater angle is longer than the side opposite to the smaller angle

Complex number, The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z...

The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z4.ABCD is rhombus;AC=2BD.if  Z2=2+i ,Z4=1-2i,find Z1 and Z3 Ans) B(2,1) , D(1,-2) Mid Point (3/2,-1/2) Write Equati

Example of cartesian coordinate graph, Example of Cartesian coordinate Grap...

Example of Cartesian coordinate Graph: Example:   The temperature of water flowing in a high pressure line was measured at regular intervals.  Plot the subsequent recorded da

5% sales tax on a basket what was the price of the basket, The 5% sales tax...

The 5% sales tax on a basket was $0.70. What was the price of the basket? Use a proportion to solve the problem; part/whole = %/100. The whole is the price of the basket (wh

Trivial solution of equation, Specified a system of equations, (1), we will...

Specified a system of equations, (1), we will have one of the three probabilities for the number of solutions. 1.   No solution. 2.   Accurately one solution. 3.   Infinit

Mean and standard deviation, Q. Mean and Standard Deviation? Ans. ...

Q. Mean and Standard Deviation? Ans. The normal distribution is totally described if we know the average and standard deviation. - the population mean of the distribu

Geometry, How do you solve (17+w)^2 + w^2 = (25+w)^2

How do you solve (17+w)^2 + w^2 = (25+w)^2

Quadratic equation, find a quadratic equation whose roots are q+1/2 and 2p-...

find a quadratic equation whose roots are q+1/2 and 2p-1 with p+q=1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd