Functions of several variables - three dimensional space, Mathematics

Assignment Help:

Functions of Several Variables - Three Dimensional Space

In this part we want to go over a few of the basic ideas about functions of much more than one variable.

Very first, keep in mind that graphs of functions of two variables, z = f (x, y) are surfaces in three dimensional (3D) space. For instance here is the graph of z = 2x2 + 2y2 -4.

1143_Functions of Several Variables - Three Dimensional Space 1.png

This is an elliptic parabaloid and is an instance of a quadric surface. We saw so many of these in the earlier section. We will be seeing quadric surfaces quite regularly later.

Other common graph that we will be seeing quite a bit in this course is the graph of a plane.  We comprise a convention for graphing planes which will make them a slightly easier to graph and hopefully visualize.

Remind that the equation of a plane is illustrated by

ax + by + cz = d

or if we solve this equation for z we can write it in terms of function notation. This provides,

f (x, y) = Ax + By + D

To graph a plane we will usually find the intersection points along with the three axes and then graph the triangle which connects those three points. This triangle will be a part of the plane and will provide us a fairly decent thought on what the plane itself should act like.  For instance let's graph the plane illustrated by,

f (x, y) = 12 - 3x - 4 y

For the aim of graphing this it would possibly be easier to write this as,

 z = 12 - 3x - 4 y                                ⇒         3x + 4 y + z = 12

Here now, each of the intersection points along with the three main coordinate axes is described by the fact that two of the coordinates are zero.  Example for this, the intersection with the z-axis is illustrated by x = y = 0.  Thus, the three intersection points are,

x - axis : (4, 0, 0)

y - axis : (0, 3, 0)

z - axis : (0, 0,12)

Below is the graph of the plane.

69_Functions of Several Variables - Three Dimensional Space 2.png

Now here, to extend this out, graphs of functions of the type w = f (x, y, z) would be four dimensional surfaces.  Actually we cannot graph them, although it does not hurt to point this out. We next wish to talk about the domains of functions of much more than one variable.  Remind that domains of functions of a single variable, y = f (x), contained all the values of x that we could plug into the function and get back a real number. At present, if we think about it, the meaning of this is that the domain of a function of a single variable is an interval (or intervals) of values from the number line or one dimensional space.

The domain of functions of two variables that are, z = f (x, y), are regions from two dimensional space and contain all the coordinate pairs, (x, y) , that we could plug into the function and obtain back a real number.


Related Discussions:- Functions of several variables - three dimensional space

Sketch the feasible region, Sketch the feasible region for the following se...

Sketch the feasible region for the following set of constraints: 3y - 2x  ≥ 0 y + 8x  ≤  53 y - 2x  ≤  2 x  ≥ 3. Then find the maximum and minimum values of the objective

Determine the volume of the hollowed solid, A cylindrical hole with a radiu...

A cylindrical hole with a radius of 4 inches is cut through a cube. The edge of the cube is 5 inches. Determine the volume of the hollowed solid in terms of π. a. 125 - 80π

Help, Two sessions of swimming lessons were held at a pool. In the first se...

Two sessions of swimming lessons were held at a pool. In the first session 40 students attended. Of these 40 students 60% were girls. How many girls attended the first session of s

Prove that its inclination is given by cot = b cot - a, Two stations due...

Two stations due south of a leaning tower which leans towards the north are at distances a and b from its foot.  If α ,  β be the elevations of the top of the tower from these

Supply/demand, For the pair of supply-and-demand equations, where x represe...

For the pair of supply-and-demand equations, where x represents the quantity demanded in units of 1000 and p is the unit price in dollars, find the equilibrium quantity and the equ

Formulas, A house painter uses the formula, c = $110.50 + $39.50h, where c ...

A house painter uses the formula, c = $110.50 + $39.50h, where c is the total cost and h is the number of hours he works, to determine how much he charges his customers. How much s

Find the probability density function, 1. The lifetime T (in days) of an el...

1. The lifetime T (in days) of an electrical component has reliability function given by: R(t) = e -0.01t for time t > 0. An electrical system consists of four such components. Th

Algebra function., problem to understand an problem; f(X-2)=X+3 / X-4

problem to understand an problem; f(X-2)=X+3 / X-4

Relative measures of dispersion, Relative measures of dispersion Defi...

Relative measures of dispersion Definition of Relative measures of dispersion: A relative measure of dispersion is a statistical value that may be utilized to compare va

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd