Functions of several variables - three dimensional space, Mathematics

Assignment Help:

Functions of Several Variables - Three Dimensional Space

In this part we want to go over a few of the basic ideas about functions of much more than one variable.

Very first, keep in mind that graphs of functions of two variables, z = f (x, y) are surfaces in three dimensional (3D) space. For instance here is the graph of z = 2x2 + 2y2 -4.

1143_Functions of Several Variables - Three Dimensional Space 1.png

This is an elliptic parabaloid and is an instance of a quadric surface. We saw so many of these in the earlier section. We will be seeing quadric surfaces quite regularly later.

Other common graph that we will be seeing quite a bit in this course is the graph of a plane.  We comprise a convention for graphing planes which will make them a slightly easier to graph and hopefully visualize.

Remind that the equation of a plane is illustrated by

ax + by + cz = d

or if we solve this equation for z we can write it in terms of function notation. This provides,

f (x, y) = Ax + By + D

To graph a plane we will usually find the intersection points along with the three axes and then graph the triangle which connects those three points. This triangle will be a part of the plane and will provide us a fairly decent thought on what the plane itself should act like.  For instance let's graph the plane illustrated by,

f (x, y) = 12 - 3x - 4 y

For the aim of graphing this it would possibly be easier to write this as,

 z = 12 - 3x - 4 y                                ⇒         3x + 4 y + z = 12

Here now, each of the intersection points along with the three main coordinate axes is described by the fact that two of the coordinates are zero.  Example for this, the intersection with the z-axis is illustrated by x = y = 0.  Thus, the three intersection points are,

x - axis : (4, 0, 0)

y - axis : (0, 3, 0)

z - axis : (0, 0,12)

Below is the graph of the plane.

69_Functions of Several Variables - Three Dimensional Space 2.png

Now here, to extend this out, graphs of functions of the type w = f (x, y, z) would be four dimensional surfaces.  Actually we cannot graph them, although it does not hurt to point this out. We next wish to talk about the domains of functions of much more than one variable.  Remind that domains of functions of a single variable, y = f (x), contained all the values of x that we could plug into the function and get back a real number. At present, if we think about it, the meaning of this is that the domain of a function of a single variable is an interval (or intervals) of values from the number line or one dimensional space.

The domain of functions of two variables that are, z = f (x, y), are regions from two dimensional space and contain all the coordinate pairs, (x, y) , that we could plug into the function and obtain back a real number.


Related Discussions:- Functions of several variables - three dimensional space

Size of the penumbra, With reference to Fig. 1(a) show that the magnificati...

With reference to Fig. 1(a) show that the magnification of an object is given by M=SID/SOD. With reference to Fig. 1(b) show that the size of the penumbra (blur) f is given by f

Types of infinity, TYPES OF INFINITY : Mostly the students have run across...

TYPES OF INFINITY : Mostly the students have run across infinity at several points in previous time to a calculus class. Though, when they have dealt along with this, this was jus

Inverse function, how to solve the equation of an inverse function

how to solve the equation of an inverse function

Operation of fraction, what are the formula in the operation of fraction an...

what are the formula in the operation of fraction and how will i apply the operation of fraction on word problems

What is the cost of one adult ticket, The cost of a student ticket is $1 mo...

The cost of a student ticket is $1 more than half of an adult ticket. Six adults and four student tickets cost $28. What is the cost of one adult ticket? Let x = the cost of a

Find the area of the shaded region of square, In the adjoining figure, ABCD...

In the adjoining figure, ABCD is a square of side 6cm.  Find the area of the shaded region. Ans:    From P draw PQ ⊥ AB AQ = QB = 3cm (Ans: 34.428 sq cm) Join PB

Precalculuc, evaluate the expression and write the result in the form a + b...

evaluate the expression and write the result in the form a + bi. I^37

Lpp, A paper mill produces two grades of paper viz., X and Y. Because of ra...

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

Shoppers'' stop, How should shoppers''stop develop its demand forecasts?

How should shoppers''stop develop its demand forecasts?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd