Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Determine the fraction of the time, Ipswich has two ambulances. Ambulance 1...

Ipswich has two ambulances. Ambulance 1 is based at the local college and ambulance 2 is based downtown. If a request for an ambulance comes from the local college, the college-bas

Indefinite integrals, Indefinite Integrals : In the past two chapters we'v...

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now

Do all our activities involve mathematics?, Do All Our Activities Involve M...

Do All Our Activities Involve Mathematics? :  The answer to this is 'yes' and 'no'. For those who look for mathematics and know where to look for it, it is 'yes'. For those who do

Basic, 8l550ml - 1/4l =

8l550ml - 1/4l =

Hierarchical multiple regression, A group of children who lived near a lead...

A group of children who lived near a lead smelter in El Paso, Texas, were identified and their blood levels of lead were measured. An exposed group of 46 children were identified w

Find the value of ((a+b)/(a-b)) , If arg (a/b) = pi/2, then find the value ...

If arg (a/b) = pi/2, then find the value of ((a+b)/(a-b)) where a,b are complex numbers. Ans) Arg (a/b) =Pi/2 Tan-1   (a/b)=   Pi/2 A/B = tanP/2 ,therefore a/b=infinity.

Brownian motion, How do I find the density of a square of a brownian motion...

How do I find the density of a square of a brownian motion .

Calculate the density of people per square mile, 1.  In 1900, a certain cou...

1.  In 1900, a certain country's population was 77,977,459 and it's area was 2,821,924 square miles, In 2000, the country's population was 283,575,229 and its area was 3,551,003 sq

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd