Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Unipolar and bipolar boolean inputs, A 4-input Neuron has weights (1,-1,  0...

A 4-input Neuron has weights (1,-1,  0,  0.5.Calculate the network output when the following input vectors are applied. For calculation assume: a. f(net) = unipolar bina

Use newtons method to find out an approximation, Use Newton's Method to fin...

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places. Solution

The sum of two consecutive integers is 41 integer, The sum of two consecuti...

The sum of two consecutive integers is 41. What are the integers? Two consecutive integers are numbers in sequence like 4 and 5 or -30 and -29, that are each 1 number apart. Le

4th grade, Ray cut 6 pieces of rope . Each piece was between 67 and 84 inch...

Ray cut 6 pieces of rope . Each piece was between 67 and 84 inches long. What would be the total length of the 6 pieces of rope?

Determine the length of the rectangle, The height of a rectangle is 20 cm. ...

The height of a rectangle is 20 cm. The diagonal is 8 cm more than the length. Determine the length of the rectangle. a. 20 b. 23 c. 22 d. 21 d. To determine the len

Sum of a number of terms in g.p., We know that the terms in G.P. are:...

We know that the terms in G.P. are: a, ar, ar 2 , ar 3 , ar 4 , ................, ar n-1 Let s be the sum of these terms, then s = a + ar + ar 2

Infinite series, all properties, formulas of infinite series

all properties, formulas of infinite series

Vectors, A 10 m ladder of 150N is placed at an angle 30degrees to a smooth ...

A 10 m ladder of 150N is placed at an angle 30degrees to a smooth wall at point A and the other end (point B) on the ground. Assume that the weight of the ladder acts at its mid po

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd