Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Function of a function, Function of a Function Suppose ...

Function of a Function Suppose y is a function of z,            y = f(z) and z is a function of x,            z = g(x)

Differentiate exponential functions, Differentiate following functions. ...

Differentiate following functions. (a)    R ( w) = 4 w - 5 log 9 w (b)   f ( x ) = 3e x + 10x 3 ln x Solution :  (a) It will be the only example which doesn't includ

Euler equations, Euler Equations - Series Solutions to Differential Equ...

Euler Equations - Series Solutions to Differential Equations In this section we require to look for solutions to, ax 2 y′′ + bxy′ + cy = 0 around x0  = 0. These ki

Working definition of continuity , "Working" definition of continuity ...

"Working" definition of continuity A function is continuous in an interval if we can draw the graph from beginning point to finish point without ever once picking up our penci

Find out that sets of functions are linearly dependent, Find out if the fol...

Find out if the following sets of functions are linearly dependent or independent.  (a) f (  x ) = 9 cos ( 2 x )    g (  x ) = 2 cos2 (  x ) -  2 sin 2 (  x ) (b) f

Algebra 2 Appendix F, I have an algebra assignment I need help with, you ha...

I have an algebra assignment I need help with, you have helped me before.. I need the work shown.

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle

Statistical models in simulation, Players and spectators enter a ballpark a...

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability

Integrate even or odd function, Integrate following. ∫ -2   2 4x 4 - ...

Integrate following. ∫ -2   2 4x 4 - x 2   + 1dx Solution In this case the integrand is even & the interval is accurate so, ∫ -2   2 4x 4 - x 2   + 1dx = 2∫ o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd