Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Arthemetic progreession, ball are arranged in rows to form an equilateral t...

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe

find the original number, A two-digit number is seven times the sum of its...

A two-digit number is seven times the sum of its digits.  The number formed by reversing the digits is 18 less than the  original number. Find the original number.

Utilizes the definition of the limit to prove the given limi, Utilizes the ...

Utilizes the definition of the limit to prove the given limit. Solution In this case both L & a are zero.  So, let ε 0 so that the following will be true. |x 2 - 0|

Comparison test - sequences and series, Comparison Test Assume that we...

Comparison Test Assume that we have two types of series ∑a n and ∑b n with a n , b n ≥ 0 for all n and a n ≤ b n for all n.  Then, A.  If ∑b n is convergent then t

Logorithms, log base 5 (3-2x) + log base 5 (2+x) = 1

log base 5 (3-2x) + log base 5 (2+x) = 1

1234 Mathematics, use only the digits 1,2,3 and 4 in any order to write an ...

use only the digits 1,2,3 and 4 in any order to write an expression for the numbers 1 to 100. you may only use each digit once. You may use exponents of 1,2,3 and 4 in some of th

Compute the probability of weather, Analysis of questionnaire completed by ...

Analysis of questionnaire completed by holiday makers showed that 0.75 classified their holiday as excellent at Malindi. The probability of hot weather in the resort is 0.6.  If th

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd