Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Real numbers on every line, Make a file called "testtan.dat" which has 2 li...

Make a file called "testtan.dat" which has 2 lines, with 3 real numbers on every line (some negative, some positive, in the range from-1 to 3).  The file can be formed from the edi

Hcf and lcm, The HCF & LCM of two expressions are respectively (x+3) and (x...

The HCF & LCM of two expressions are respectively (x+3) and (x cube-7x+6). If one is x square+2x-3 , other is? Solution) (x+3) * (x^3-7x+6) = (x^2+2x-3) * y      ( ) (HCF*LCM=

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

Differential Equations, Verify Liouville''s formula for y "-y" - y'' + y = ...

Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ?

Vectors, |a.x|=1 where x = i-2j+2k then calculate a

|a.x|=1 where x = i-2j+2k then calculate a

Integration of sin ³a.cos ³a , writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.co...

writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.cosa = sin 3 a.(1-sin 2 a).cosa put sin a as then cos a da = dt integral(t 3 (1-t 2 ).dt = integral of t 3 - t 5 dt = t 4 /4-t 6 /6

Integer., How do we add integers

How do we add integers

Lim.., how can solve limits

how can solve limits

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd