Functions of limits, Mathematics

Assignment Help:

Following is some more common functions that are "nice enough".

  • Polynomials are nice enough for all x's.
  • If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provided p(x) and q(x) both are nice enough & if we don't get division by zero at the point we're evaluating at.
  • cos ( x ) , sin ( x ) are nice enough for all x's
  • sec ( x ) , tan ( x ) are nice enough provided x ≠ ........., - 5 ?/2 , - 3 ?/2 , ?/2 , 3 ?/2 , 5 ?/2 , ...... In other terms secant & tangent are nice enough everywhere cosine isn't zero. To illustrates why recall that these are both actually rational functions & that cosine is in the denominator of both then go back up & look at the second bullet above.
  • csc ( x ) , cot ( x ) are nice enough provided x ≠ ......, -2 ? , - ? , 0, ? , 2 ? ,..... In other terms cosecant & cotangent are nice enough everywhere sine isn't zero
  • is nice enough for all x if n is odd.
  • if n is even then is nice enough for x ≥ 0. Here we need x ≥ 0 to ignore having to deal along with complex values.
  • a x , ex are nice enough for all x's
  • logb x, ln x are nice enough for x>0. Recall we can just plug positive numbers into logarithms & not zero or negative numbers.
  • Any sum, difference or product of the functions will also be nice enough.
  • Quotients will be nice enough provided we don't obatin division by zero upon evaluating the limit.

The last bullet is significant. It means that for any combination of these functions all we have to do is evaluate the function at the point in question, ensuring that none of the restrictions are violated. It means that now we can do a large number of limits.


Related Discussions:- Functions of limits

Properties of vector arithmetic, Properties of Vector Arithmetic If v, ...

Properties of Vector Arithmetic If v, w and u are vectors (each with the same number of components) and a and b are two numbers then we have then following properties. v →

Compute standard and variance deviation, A firm is manufacturing 45,000 uni...

A firm is manufacturing 45,000 units of nuts. The probability of having a defective nut is 0.15 Compute the given i. The expected no. of defective nuts ii. The standard an

How many cousins does robert have- miscellaneous math, Bonnie has twice as ...

Bonnie has twice as many cousins as Robert. George has 5 cousins, which is 11 less than Bonnie has. How many cousins does Robert have? Work backwards to find the solution. Geor

What are the three sides of a right triangle, What are the Three Sides of a...

What are the Three Sides of a Right Triangle? Each side of a right triangle can be labeled opposite, adjacent, or hypotenuse, based on its relationship to the right angle and o

Find var (3x+8) where x is a random variable, If Var(x) = 4, find Var (3x+8...

If Var(x) = 4, find Var (3x+8), where X is a random variable. Var (ax+b) = a 2 Var x Var (3x+8) = 3 2 Var x = 36

Proof f(x) + g(x) dx = f(x) dx + g(x) dx anti-derivation, Proof of: ...

Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of

Decision trees illustration, A company is considering whether to enter a ve...

A company is considering whether to enter a very competitive market. In case company decided to enter in market this must either install a new forging process or pay overtime wages

How did they go about "modernizing" the region, What were the two main poli...

What were the two main political parties that formed in the majority of the new nations of Latin America post independence? In what ways were they different? Which party ascended t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd