Functions , Mathematics

Assignment Help:

For the layman, a "function" indicates a relationship among objects. A function provides a model to describe a system. Economists refer to demand functions which refer to the sales volume of an item as a function of the item's price. Similarily, economists refer to supply function which considers production volume of an item as a function of the prevailing/projected price of the item.

A function expresses the relationship of one variable or a group of variables (called the Domain) with another variable (called the Range) by associating every member in the domain with a unique member in the range. 

Suppose X represents the "price of a good" and Y the "demand". We may postulate that Y is related to X in the sense that if we fix the price of the good, then we will be able to determine the demand. We say that Y is a function of X since we are able to compute a unique value of Y for a given value of X. We may represent the relationship as y = f(x), where f represents the relationship. It is important to note that it may be the case, though it is not necessary, that the relationship is a causal one, that is, X is the cause and Y is the effect. When the relationship is causal, we may regard X as the independent variable and Y as the dependent variable.

Thus,

y = f(x) = 2 - 3x,

y = g(x) = 2x2 - x + 100

are examples of functions. But

                   y2 = x

is not a function of X since the rule that a given value of X should yield a unique value of Y is violated. (Verify for X = 4.)

Functions can be expressed algebraically (as in y = 2x - 3) or graphically or in a tabular form.

Example 

Suppose we play a game involving the toss of two fair coins. And for every Head that turns up, you win Re.1 and for every Tail that turns up, you lose Re.1

Let D = {TT, HT, HH} and R = {-2, 0, 2}

Then the game may be represented by the function

R = f(D)

where f(TT) = -2, f(HT) = 0 and f(HH) = 2


Related Discussions:- Functions

Heat loss in a cylindrical pipe, which laws of physics are used to discuss ...

which laws of physics are used to discuss heat loss in a pipe

Compound interest, principal=2000 rate=5% time=2 years find compound intere...

principal=2000 rate=5% time=2 years find compound interest

Sequence and series, Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+.....

Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+...+15+17)=

Constructing a dfa/nfa or a regex), Let ∑ = (0, 1). Define the following la...

Let ∑ = (0, 1). Define the following language: L = {x | x contains an equal number of occurrences of 01 and 10} Either prove L is regular (by constructing a DFA/NFA or a rege

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

MATH, I don''t understand so what is 3 (8-x);24-15

I don''t understand so what is 3 (8-x);24-15

Commercial, The C.P. of 20 articles is same as theS.P. of x articles.Articl...

The C.P. of 20 articles is same as theS.P. of x articles.Article profit is 25%.Find x

If tana+sina=m and tana-sina=n, If tanA+sinA=m and tanA-sinA=n, show that m...

If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans:    TanA + SinA = m       TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2

Quantitative method, Year 1 2 3 4 ...

Year 1 2 3 4 5 6 7 8 9 10 Corn revenue 40 44 46

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd