Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The functions
{sinmx; cosmx}; m = 0,....∞
form a complete set over the interval x ∈ [ -Π, Π]. That is, any function f(x) can be expressed as a linear superposition of these with a unique set of coecients. For f(x) = x, we have
To show that the above holds for x = 1, study the dierence between the left- and right-hand sides of the equality as a function of the number of terms included in the sum. Write an octave program to compute and plot the truncated sum approximation (expansion vs x) for n =4 and 16 together with the function x. Make a table showing the error (dierence between two sides) for n =1, 2, 4, 16, 64, 256, 1024. Plot the result of the expansion for 2 values of n together with the original function. Comment on your results. You should submit an octave script or function le I can use to reproduce your results and a separate document (plain text le preferred) for your comments.
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.
1. Find the number of zeroes of the polynomial y = f(x) whose graph is given in figure. 2 Find the circumcentre of the triangle whose vertices are (-2, -3), (-1, 0) and (7,-6).
1+1
A Cleaning solution has 40% vinegar. Find the amount of vinegar in 32 ounces of the solution>
It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and
NATURAL NUMBERS The numbers 1, 2, 3, 4.... Are called as natural numbers, their set is shown by N. Hence N = {1, 2, 3, 4, 5....} WHOLE NUMBERS The numbers 0, 1, 2, 3, 4
Consider the function f: N → N, where N is the set of natural numbers, defined by f(n) = n 2 +n+1. Show that the function f is one-one but not onto. Ans: To prove that f is one
how to prove Decidability Theorem of Logic
Question 1: (a) Show that, for all sets A, B and C, (i) (A ∩ B) c = A c ∩B c . (ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). (iii) A - (B ∪ C) = (A - B) ∩ (A - C).
Harold used a 3% iodine solution and a 20% iodine solution to make a 95- ounce solution in which was 19% iodine. How many ounces of the 3% iodine solution did he use? Let x = t
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd