Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The functions
{sinmx; cosmx}; m = 0,....∞
form a complete set over the interval x ∈ [ -Π, Π]. That is, any function f(x) can be expressed as a linear superposition of these with a unique set of coecients. For f(x) = x, we have
To show that the above holds for x = 1, study the dierence between the left- and right-hand sides of the equality as a function of the number of terms included in the sum. Write an octave program to compute and plot the truncated sum approximation (expansion vs x) for n =4 and 16 together with the function x. Make a table showing the error (dierence between two sides) for n =1, 2, 4, 16, 64, 256, 1024. Plot the result of the expansion for 2 values of n together with the original function. Comment on your results. You should submit an octave script or function le I can use to reproduce your results and a separate document (plain text le preferred) for your comments.
The area of the base of a prism can be expressed as x2 + 4x + 1 and the height of the prism can be expressed as x - 3. What is the volume of this prism in terms of x? Because t
Illustration: Find the solution to the subsequent IVP. ty' + 2y = t 2 - t + 1, y(1) = ½ Solution : Initially divide via the t to find the differential equation in
Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us
Cross Product In this last section we will look at the cross product of two vectors. We must note that the cross product needs both of the vectors to be three dimensional (3D
How can I solve the in-equations? Assist me.
The power
Determine if the relation represented by the following Boolean matrix is partially ordered. Ans: Let the following relation R is defined on set A = {x, y, z}. To test if t
Example Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:
consumer behaviour in my feild of studies accounting ..
If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd