Full equilibrium strategy example, Game Theory

Assignment Help:

 (a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your opponent must take the sum to at least 90 but can take it no higher than 99. In either case you can get to 100 on the next move. Using rollback, you can show that you can win if you can get the sum to 78 or to 67 . . . or to 12 or to 1. Thus, being the first mover and using a strategy that entails choosing 1 on the first move and then saying 11 minus whatever your opponent says allows you to win; you take the sum successively to 12, 23, . . ., 78, 89, and 100.

Technically, the full equilibrium strategy is

(i) if you are the first player, start with 1;

(ii) if the current total is not (100 – 11n) for some n, then choose the number that will bring the total to this form; or

(iii) if the current total is of the form (100 – 11n), then choose any number (all choices are equally bad).


(b) In this version, you lose if you force the total to equal or exceed 100, so you can win if you take the total to 99. Using the same type of analysis as  above, you see that you can win if you can get the sum to 88, 77, . . ., 22, or 11. This time you want to be the second mover. Your strategy should be to say 11 minus whatever your opponent says; this strategy takes you successively to 11, 22, . . ., 77,88, 99, and a win.

The full equilibrium strategy is

(i) if you are the first player, choose any number (all choices are equally bad);

(ii) if the current total is a multiple of 11, choose any number (all choices are equally bad); or

(iii) if the current total is not a multiple of 11, choose the number that will make the total a multiple of 11 (this is equivalent to choosing 11 minus the number just chosen by your opponent).


Related Discussions:- Full equilibrium strategy example

Draw a table representing the prisoner.s dilemma game, 1. (a) True or False...

1. (a) True or False: If a 2x2 game has a unique pure strategy Nash Equilibrium, then both players always have dominant strategies. (b) Draw a table representing the Prisoner.s Dil

Cournot, Nineteenth century French economist attributed with the introducti...

Nineteenth century French economist attributed with the introduction of the theory of profit maximizing producers. In his masterpiece, The Recherches, published in 1838, Cournot pr

Game playing in class:adding numbers—win at 100, GAME PLAYING IN CLASS GAME...

GAME PLAYING IN CLASS GAME 1 Adding Numbers—Win at 100 This game is described in Exercise 3.7a. In this version, two players take turns choosing a number between 1 and 10 (inclus

non-credible threat , A non-credible threat may be a threat created by a p...

A non-credible threat may be a threat created by a player in a very Sequential Game which might not be within the best interest for the player to hold out. The hope is that the thr

Bid, . A bid is an sign by a potential buyer of the price the buyer is read...

. A bid is an sign by a potential buyer of the price the buyer is ready to pay for the object being auctioned. In a Procurement Auction, the bid is an sign of the price a seller is

Maximization problem, Two individuals (i ∈ {1, 2}) work independently on a ...

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and

Tower defense game, Tower defense - is a subgenre of real-time strategy gam...

Tower defense - is a subgenre of real-time strategy games. The goal of tower defense games is to try to stop enemies from crossing a map by building towers which shoot at them as t

NAsh equilibrium, Consider a game in which player 1 chooses rows, player 2 ...

Consider a game in which player 1 chooses rows, player 2 chooses columns and player 3 chooses matrices. Only Player 3''s payoffs are given below. Show that D is not a best response

Simultaneous move games with mixed strategies, This chapter introduces mixe...

This chapter introduces mixed strategies and the methods used to solve for mixed strategy equilibria. Students are likely to accept the idea of randomization more readily if they t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd