Full equilibrium strategy example, Game Theory

Assignment Help:

 (a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your opponent must take the sum to at least 90 but can take it no higher than 99. In either case you can get to 100 on the next move. Using rollback, you can show that you can win if you can get the sum to 78 or to 67 . . . or to 12 or to 1. Thus, being the first mover and using a strategy that entails choosing 1 on the first move and then saying 11 minus whatever your opponent says allows you to win; you take the sum successively to 12, 23, . . ., 78, 89, and 100.

Technically, the full equilibrium strategy is

(i) if you are the first player, start with 1;

(ii) if the current total is not (100 – 11n) for some n, then choose the number that will bring the total to this form; or

(iii) if the current total is of the form (100 – 11n), then choose any number (all choices are equally bad).


(b) In this version, you lose if you force the total to equal or exceed 100, so you can win if you take the total to 99. Using the same type of analysis as  above, you see that you can win if you can get the sum to 88, 77, . . ., 22, or 11. This time you want to be the second mover. Your strategy should be to say 11 minus whatever your opponent says; this strategy takes you successively to 11, 22, . . ., 77,88, 99, and a win.

The full equilibrium strategy is

(i) if you are the first player, choose any number (all choices are equally bad);

(ii) if the current total is a multiple of 11, choose any number (all choices are equally bad); or

(iii) if the current total is not a multiple of 11, choose the number that will make the total a multiple of 11 (this is equivalent to choosing 11 minus the number just chosen by your opponent).


Related Discussions:- Full equilibrium strategy example

Trigger strategy, A strategy sometimes applied to repeated prisoner's dilem...

A strategy sometimes applied to repeated prisoner's dilemmas during which a player begins by cooperating however defects to cheating for a predefined amount of your time as a respo

Iterated dominant strategy equilibrium, What is the Iterated Dominant Strat...

What is the Iterated Dominant Strategy Equilibrium (IDSE) and associated pay-offs? Type your answer in the following form: (c,B) , (6, 4) if you think the outcome is

Extraneous estimates, Extraneous Estimates If some parameters are identi...

Extraneous Estimates If some parameters are identified, while others are not and there exists information on their value from other (extraneous) sources, the researcher may pro

Imperfect data, A sequential game is one among imperfect data if a player d...

A sequential game is one among imperfect data if a player doesn't grasp precisely what actions different players took up to that time. Technically, there exists a minimum of one da

Explain the financial system terms definitions, Explain the financial syste...

Explain the financial system terms definitions. The Financial System Definitions: Wealth It is sum of Current Savings and Accumulated Savings Financial asset P

Nash equilibrium, A Nash equilibrium, named when John Nash, may be a set of...

A Nash equilibrium, named when John Nash, may be a set of methods, one for every player, such that no player has incentive to unilaterally amendment her action. Players are in equi

Bid rigging, A practice analogous to price fixing in which auction members ...

A practice analogous to price fixing in which auction members form a ring whose associates agree not to bid against each other, either by discarding the auction or by placing phony

Strictly dominant strategy , A strategy is strictly dominant if, no matter ...

A strategy is strictly dominant if, no matter what the other players do, the strategy earns a player a strictly higher payoff than the other. Hence, a method is strictly dominant i

Determine the bayesian nash equilibrium of a game, Stanley is auctioning an...

Stanley is auctioning an item that he values at zero. Betty and Billy, the two potential buyers, each have independent private values which are drawn from a uniform distribution, P

Bayes rule, Treating probability as a logic, Thomas Bayes defined the follo...

Treating probability as a logic, Thomas Bayes defined the following: Pr(X|Y)=Pr(Y|X)Pr(X)/Pr(Y) For example, probability that the weather was bad given that our friends playe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd