Full equilibrium strategy example, Game Theory

Assignment Help:

 (a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your opponent must take the sum to at least 90 but can take it no higher than 99. In either case you can get to 100 on the next move. Using rollback, you can show that you can win if you can get the sum to 78 or to 67 . . . or to 12 or to 1. Thus, being the first mover and using a strategy that entails choosing 1 on the first move and then saying 11 minus whatever your opponent says allows you to win; you take the sum successively to 12, 23, . . ., 78, 89, and 100.

Technically, the full equilibrium strategy is

(i) if you are the first player, start with 1;

(ii) if the current total is not (100 – 11n) for some n, then choose the number that will bring the total to this form; or

(iii) if the current total is of the form (100 – 11n), then choose any number (all choices are equally bad).


(b) In this version, you lose if you force the total to equal or exceed 100, so you can win if you take the total to 99. Using the same type of analysis as  above, you see that you can win if you can get the sum to 88, 77, . . ., 22, or 11. This time you want to be the second mover. Your strategy should be to say 11 minus whatever your opponent says; this strategy takes you successively to 11, 22, . . ., 77,88, 99, and a win.

The full equilibrium strategy is

(i) if you are the first player, choose any number (all choices are equally bad);

(ii) if the current total is a multiple of 11, choose any number (all choices are equally bad); or

(iii) if the current total is not a multiple of 11, choose the number that will make the total a multiple of 11 (this is equivalent to choosing 11 minus the number just chosen by your opponent).


Related Discussions:- Full equilibrium strategy example

Nash Equilibria, Two people are engaged in a joint project. If each person ...

Two people are engaged in a joint project. If each person i puts in the effort xi, the outcome of the project is worth f(x1, x2). Each person’s effort level xi is a number between

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Procurement auction, A market mechanism during which an object, service, or...

A market mechanism during which an object, service, or set of objects is being purchased, instead of sold, to the auctioneer. The auction provides a selected set of rules which wil

Vickrey auction, A sealed-bid second worth auction during which participant...

A sealed-bid second worth auction during which participants every simultaneously submit bids. The auctioneer discloses the identity of the very best bidder who is said the winner.

Complete data, A game is one among complete data if all factors of the spor...

A game is one among complete data if all factors of the sport are common information. Specifically, every player is awake to all different players, the timing of the sport, and als

Reserve worth , A reserve worth is that the minimum acceptable bid in an au...

A reserve worth is that the minimum acceptable bid in an auction. If no bidder submits a bid higher than the reserve worth, the auctioneer keeps the item offered for sale. Alternat

Game 3 bargaining, GAME 3 Bargaining Two players A and B are chosen. P...

GAME 3 Bargaining Two players A and B are chosen. Player A offers a split of a dollar (whole dimes only). If B agrees, both get paid the agreed coins and the game is over. If

Assurance game, Assurance game Scenario "Assurance game" may be a generi...

Assurance game Scenario "Assurance game" may be a generic name for the sport a lot of commonly called "Stag Hunt." The French thinker, Jean Jacques Rousseau, presented the subse

Bernoulli, Eighteenth century Dutch mathematician codified the notion of ex...

Eighteenth century Dutch mathematician codified the notion of expected utility as a revolutionary approach to risk. He noted that folks don't maximize expected returns however expe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd