Free - undamped vibrations, Mathematics

Assignment Help:

It is the simplest case which we can consider. Unforced or free vibrations sense that F(t) = 0 and undamped vibrations implies that g = 0. Under this case the differential equation turn into,

mu′′ + ku = 0

It is easy sufficient to solve in common. The characteristic equation which has the roots,

r= + i √(k/m)

This is generally reduced to,

r= + w0 i

Here,

w0 = √(k/m)

And w0 is termed as the natural frequency. Recall also that m > 0 and k > 0 and thus we can guarantee that such quantity will be complicated. The solution under this case is after that,

u(t)  = c1 cos (w0 t) + c2 sin(w0 t)     .........................................(4)

We can write (4) in the subsequent form,

u(t)  =R cos (w0 t - d)   .........................(5)

Here R is the amplitude of the displacement and d is the phase shift or phase angle of the displacement.

While the displacement is in the form of (5) it is generally easier to work with. Though, it's easier to get the constants in (4) from the initial conditions so it is to determine the amplitude and phase shift in (5) from the initial conditions. Therefore, so as to get the equation in the form in (5) we will first put the equation into the form in (4), determine the constants, c1 and c2 and then convert it into the form in (5).

Therefore, assuming that we have c1 and c2 how do we find out R and d?  Let's begin with (5) and use a trig individuality to write this as

u(t)  =R cos (d) cos (w0 t) + Rsin(d) sin(w0 t)    ...............................(6)

Now, R and d are constants and therefore if we compare (6) to (4) we can notice that,

c1 = R cos (d),                          c2 = Rsin(d)

We can determine R in the following manner.

c21+c22 = R2 cos2d + R2 sin2d = R2

Both sides taking the square root of and assuming that R is positive will provide,

R = √(c21+c22)   ............................(7)

Finding d is just as simple.  We'll begin with,

c2/c1 = R sin(d)/ Rcos(d) = tan (d)

Both sides taking the inverse tangent gives,

d= tan-1 (c2/c1)

Before we work any illustrations let's talk a little bit regarding to the units of mass and the British vs. metric system dissimilarities.

Recall this weight of the object is specified by

W = mg

Here m is the mass of the object and g is the gravitational acceleration. For the illustrations in this problem we'll be using the subsequent values for g.

 British: g = 32 ft / s2

 Metric: g = 9.8 m / s2

It is not the standard 32.2 ft/s2 or 9.81 m/s2, but by using these will create some of the numbers come out some nicer.

In the metric system the mass of objects is specified in kilograms (kg) and here is nothing for us to do. Though, in the British system we tend to be specified the weight of an object in pounds here keep in mind that pounds are the units of weight not mass and so we'll require to calculate the mass for these problems.


Related Discussions:- Free - undamped vibrations

Show that cos12+cos60+cos84=cos24+cos48 , L.H.S. =cos 12+cos 60+cos 84 =c...

L.H.S. =cos 12+cos 60+cos 84 =cos 12+(cos 84+cos 60) =cos 12+2.cos 72 . cos 12 =(1+2sin 18)cos 12 =(1+2.(√5 -1)/4)cos 12 =(1+.(√5 -1)/2)cos 12 =(√5 +1)/2.cos 12   R.H.S =c

Linear equations in one variable, three prices are to be distributed in a q...

three prices are to be distributed in a quiz contest.The value of the second prize is five sixths the value of the first prize and the value of the third prize is fourfifth that of

Assigment, Q1: Find three positive numbers whose sum is 54 and whose produc...

Q1: Find three positive numbers whose sum is 54 and whose product is as large as possible.

Brian 100-yard dash time was 2.68 what is the school record, Brian's 100-ya...

Brian's 100-yard dash time was 2.68 seconds more than one school record. Brian's time was 13.4 seconds. What is the school record? The school record is less than Brian's time.

Additionally functions in substitution rule, Substitution Rule Mostly ...

Substitution Rule Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substi

Some simple equation, divide 50 into two parts such that if 6 is subtracted...

divide 50 into two parts such that if 6 is subtracted from one part and 12 is added to the second part,we get the same number?

Functions of several variables - three dimensional space, Functions of Seve...

Functions of Several Variables - Three Dimensional Space In this part we want to go over a few of the basic ideas about functions of much more than one variable. Very first

Calculate the value of expected value, The owner of TMH Hospital wants to o...

The owner of TMH Hospital wants to open a new facility in a certain area. He usually builds 25-, 50-, or 100-bed facilities, depending on whether anticipated demand is low, medium

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd