Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Forward and Reverse battery bias
In diagram below(a) the battery is arranged that is why the negative terminal supplies electrons to the N-type material. These types of electrons diffuse toward the junction. The positive terminal eliminates electrons from the P-type semiconductor, forming holes that diffuse toward the junction. If the battery voltage is sufficiently great to overcome the junction potential (0.6V in Si), the N-type electrons and P-holes merge annihilating each other. This frees up space in the lattice for more carriers to flow toward the junction. So, currents of P-type and N-type majority carriers flow in the direction of the junction. The recombination at the junction permits a battery current to flow via the PN junction diode. Such type of a junction is said to be forward biased.
Figure: (a) Forward battery bias repells carriers toward junction, where recombination results in battery current. (b) Reverse battery bias attracts carriers toward battery terminals, away from junction. Depletion region thickness increases. No sustained battery current flows.
If the battery polarity is inverted like in Figure above (b) majority carriers are attracted away from the junction in the direction of the battery terminals. The positive battery terminal attracts N-type majority carriers, electrons, away from the junction. The negative terminal attracts P-type majority carriers, holes, away from the junction. This raises the thickness of the non conducting depletion region. There is no recombination of majority carriers; so, no conduction. This arrangement of battery polarity is known as the reverse bias.
A 3-phase, wye-connected, 11.8 kV, 100 MVA turbo- generator of 0.8 power factor lagging has a synchronous reactance of 2.0 p.u. on rating. The generator is driven by a steam turbin
Breifly explain abrasive jet machining in Briefly explain the following key terms in electrochemical machining (a) Electrolytes (b) ECM tooling techniques with suitable ex
1.Describe the technological process of crystallization. 2. Compose the requirements to developed crystallization model.stion..
a. Explain State Transition Diagram and define the various SDL symbols used in state transition diagram. b. Draw the signal exchange diagram for a local call used to show the se
what is that mean and explain
#questionhyprid model for cc configuration..
limitations of thevinin''s theorem
SR FLIP-FLOP (SRFF) The symbol for the SRFF is shown in Figure (a), in which S stands for "set," R stands for "reset" on the input side, and there are two outputs, the normal o
Q. A 230-Vdc shuntmotor delivers 30 hp at the shaft at 1120 r/min. If the motor has an efficiency of 87% at this load, find: (a) The total input power. (b) The line current.
Types of Field-Effect Transistors The channel of a FET (field-effect transistor) is doped to produce either an N-type semiconductor or a P-type semiconductor. The drain and so
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd