Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Forward and Reverse battery bias
In diagram below(a) the battery is arranged that is why the negative terminal supplies electrons to the N-type material. These types of electrons diffuse toward the junction. The positive terminal eliminates electrons from the P-type semiconductor, forming holes that diffuse toward the junction. If the battery voltage is sufficiently great to overcome the junction potential (0.6V in Si), the N-type electrons and P-holes merge annihilating each other. This frees up space in the lattice for more carriers to flow toward the junction. So, currents of P-type and N-type majority carriers flow in the direction of the junction. The recombination at the junction permits a battery current to flow via the PN junction diode. Such type of a junction is said to be forward biased.
Figure: (a) Forward battery bias repells carriers toward junction, where recombination results in battery current. (b) Reverse battery bias attracts carriers toward battery terminals, away from junction. Depletion region thickness increases. No sustained battery current flows.
If the battery polarity is inverted like in Figure above (b) majority carriers are attracted away from the junction in the direction of the battery terminals. The positive battery terminal attracts N-type majority carriers, electrons, away from the junction. The negative terminal attracts P-type majority carriers, holes, away from the junction. This raises the thickness of the non conducting depletion region. There is no recombination of majority carriers; so, no conduction. This arrangement of battery polarity is known as the reverse bias.
The winding of an electromagnet has an inductance of 3H and a resistance of 15?. When it is connected to a 120 V d.c. supply, Determine: (a) the steady state value of current f
First Quadrant or Class A chopper A chopper two mode operation of class A chopper can be explained as follow.
Determine Impedance in each branch - delta connection: A delta connected balanced 3-phase load is supplied from a 3-phase 400 V supply. The line current is 30 Amp and the powe
The per-phase synchronous reactance of a three-phase, wye-connected, 2.5-MVA, 6.6-kV, 60-Hz turboalternator is 10. Neglect the armature resistance and saturation. Calculate the vo
i need matlab codes for the minimum cell cost method to start the initial feasible solution and the stepping stone method to find the optimum value
20 cells with emf 1.45V and internal resistance 0.5Ω for each cells is linked 4 rows which every rows having of 5 cells in series. Load resistance 15Ω is connected to the battery.
Your site is full of plagiarised content even though you claim to be and I quote "Plagiarism Free". You should not be charging for this content, the site and service is a fraud.
Electricity Policies: The National Electricity Policy is a main policy instrument having the force of law under the Electricity Act, 2003. The Central and State Electricity Re
Q. Grade of Service In loss systems? Grade of Service : In loss systems, traffic carried by the network is normally lower than actual traffic offered to the network by subscri
if the prime mover input of an alternater connected directly to an infinite bus in increased,then its?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd