Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case,
Mu'' + γu' + ku = F( t)
The displacement function here will be
u(t) = uc(t) + UP(t)
Here the complementary solution will be the solution to the free, damped case and the exact solution will be found using undetermined coefficients or variation of parameter that ever is most convenient to utilize.
There are a couple of things to see now about this case. First, from our work back into the free, damped case we identify that the complementary solution will come to zero as t increases.
Due to this the complementary solution is often termed as the transient solution in this case. Also, due to this behavior the displacement will start to look more and more like the exact solution as t raises and so the particular solution is frequently termed as the steady state solution or forced response.
The square of a number added to 25 equals 10 times the number. What is the number? Let x = the number. The statement, "The square of a number added to 25 equals 10 times the n
Given that f(x,y) = 3xy - x 2 y - xy 2 . Find all the points on the surface z = f(x, y)where local maxima, local minima, or saddles occur
Solve 8 cos 2 (1 - x ) + 13 cos(1 - x )- 5 = 0 . Solution Now, as specified prior to starting the instance this quadratic does not factor. Though, that doesn't mean all i
i need help in math
report on shares and dividend using newspaper
For a population with a mean of μ=70 and a standard deviation of o=20, how much error, on average, would you expect between the sample mean (M) and the population mean for each of
Find out the volume of the solid obtained by rotating the region bounded by y = (x -1) ( x - 3) 2 and the x-axis about the y-axis. Solution Let's first graph the bounded r
Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for
Evaluate the following integral. ∫√(x 2 +4x+5) dx Solution: Remind from the Trig Substitution section that to do a trig substitution here we first required to complete t
Let {An} be sequence of real numbers. Define a set S by: S={i ? N : for all j > i, ai
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd