Forced - damped vibrations, Mathematics

Assignment Help:

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case,

Mu'' + γu'  + ku = F( t)

The displacement function here will be

u(t) = uc(t) + UP(t)

Here the complementary solution will be the solution to the free, damped case and the exact solution will be found using undetermined coefficients or variation of parameter that ever is most convenient to utilize.

There are a couple of things to see now about this case. First, from our work back into the free, damped case we identify that the complementary solution will come to zero as t increases.

Due to this the complementary solution is often termed as the transient solution in this case. Also, due to this behavior the displacement will start to look more and more like the exact solution as t raises and so the particular solution is frequently termed as the steady state solution or forced response.


Related Discussions:- Forced - damped vibrations

Definite integration-mathematics, Definite integration It involve integ...

Definite integration It involve integration among specified limits, say a and b The integral    is a definite integral whether the limits of integration are as: a and b

Circle, a wheel revolves 360 deegre revolution in one minute .Find how many...

a wheel revolves 360 deegre revolution in one minute .Find how many radians will the wheel subtend in one second

Three times the larger of the two numbers, If three times the larger of the...

If three times the larger of the two numbers is divided by the smaller, then the quotient is 4 and remainder is 5. If 6 times the smaller is divided by the larger, the quotient is

Standard normal distribution, Q. Describe Standard Normal Distribution? ...

Q. Describe Standard Normal Distribution? Ans. The Standard Normal Distribution has a mean of 0 and a standard deviation of 1. The letter Z is often used to refer to a sta

Theorem to computer the integral, Use green's theorem to computer the integ...

Use green's theorem to computer the integral F . dr where F = ( y^2 + x, y^2 + y) and c is bounded below the curve y= - cos(x),, above by y = sin(x) to the left by x=0 and to the r

Trignometry, verify 4(sin^4 30^0+cos60^0 )-3(cos^2 ?45?^0-sin^2 90^0 )=2

verify 4(sin^4 30^0+cos60^0 )-3(cos^2 ?45?^0-sin^2 90^0 )=2

Equal-sharing-categories of situations requiring division , Equal-sharing ...

Equal-sharing - situations in which we need to find out how much each portion Multiplication and Division contains when a given quantity is shared out into a number of equal porti

Neuro marketing, Does neuro marketing give impetus to new consumer behavio...

Does neuro marketing give impetus to new consumer behaviour

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd