Forced - damped vibrations, Mathematics

Assignment Help:

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case,

Mu'' + γu'  + ku = F( t)

The displacement function here will be

u(t) = uc(t) + UP(t)

Here the complementary solution will be the solution to the free, damped case and the exact solution will be found using undetermined coefficients or variation of parameter that ever is most convenient to utilize.

There are a couple of things to see now about this case. First, from our work back into the free, damped case we identify that the complementary solution will come to zero as t increases.

Due to this the complementary solution is often termed as the transient solution in this case. Also, due to this behavior the displacement will start to look more and more like the exact solution as t raises and so the particular solution is frequently termed as the steady state solution or forced response.


Related Discussions:- Forced - damped vibrations

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

Help, can you help me learn faster in school

can you help me learn faster in school

Give an equations with the variable on both sides, Give an Equations with t...

Give an Equations with the variable on both sides ? Many equations that you encounter will have variables on both sides. Some of these equations will even contain grouping sy

Auxiliary methods for information distribution, AUXILIARY METHODS There...

AUXILIARY METHODS There are other reprographic methods which although commonly used earlier, are now mainly used for specific purposes. We think you should be aware of these me

Find the 20th term of arithmetic progressions, Find the 20 th term from th...

Find the 20 th term from the end of the AP 3, 8, 13........253. Ans:    3, 8, 13 .............. 253 Last term = 253 a20 from end = l - (n-1)d 253 - ( 20-1) 5 253

Determine the function f ( x ) , Determine the function f ( x ) .       ...

Determine the function f ( x ) .             f ′ ( x )= 4x 3 - 9 + 2 sin x + 7e x , f (0) = 15 Solution The first step is to integrate to fine out the most general pos

What is unreducing fractions, Q, Did you know that you can unreduce a fract...

Q, Did you know that you can unreduce a fraction? Ans. Remember, you reduce a fraction by dividing the numerator and denominator by the same numbers. Here we divide

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Economics, A mortgage lender seeks to maximize the expected value of its po...

A mortgage lender seeks to maximize the expected value of its portfolio. The portfolio, of course, is the sum of all of the mortgages in it, so no generality is lost by examining t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd