Fixed and adaptive - optimal filtering, Electrical Engineering

Assignment Help:

Optimal Filtering

1389_Fixed and Adaptive.png

A system identi?cation structure is shown in Figure 1. The discrete-time signal [ ] forms the input to an unknown system represented by a moving average, FIR, ?lter with parameters, {ω01 ωn} . The output of the unknown system is given by

466_Fixed and Adaptive1.png

This can be represented more concisely in vector notation as

1891_Fixed and Adaptive2.png

where ω and x[k] are Nw + 1 element column vectors, underlines are used to denote vector quantities and the superscript (·)T represents a vector transpose.

A noise signal n[k] is added at the output of the system to yield a realistic measured output signal z[k]. An optimum ?lter is to be designed which operates on the input signal x[k] and measured output signal z[k] to yield the closest match to the unknown system. The optimum ?lter is assumed to be a moving average ?lter with the same number of parameters as the unknown system, i.e. opt.

This problem arises in many applications, for example control of some machinery plant, or of acoustic and electrical echoes in telecommunications. The Wiener solution is found by minimising the mean-square error between z[k] and y[k], where y[k] is the output of the optimum ?lter driven by x[k]. The circum?ex is used to denote that the output of the optimum ?lter is an estimate of the output of the unknown system.

If x[k]and n[k] are assumed to be uncorrelated stationary random discrete signals then the mean square error is de?ned as

2274_Fixed and Adaptive3.png

where {·} is the statistical expectation operation, which to a ?rst approximation can be considered to be an average. The right hand side of equation (1) contains a vector of crosscorrelation components and a matrix of autocorrelation components, i.e.

555_Fixed and Adaptive4.png

Differenting equation (1) with respect to opt and setting the result to zero yields the optimum Wiener ?lter solution which is given by

596_Fixed and Adaptive5.png


Related Discussions:- Fixed and adaptive - optimal filtering

Explain about register marker, Q. Explain about Register marker? Regist...

Q. Explain about Register marker? Register marker: Stronger selectors perform searching and counting . Though, the crossbar switch has no ‘intelligence'. Something external to

Electricity and gas hazards, Electricity beyond doubt is very useful and es...

Electricity beyond doubt is very useful and essential for us; but if dealt with carelessly, it can prove to be very fatal. It is compulsory for a laboratory assistant to be sure of

Current trasnsformer, A 13.8 kV feed er circui t breaker has a 600:5 multir...

A 13.8 kV feed er circui t breaker has a 600:5 multira tio curr ent transform er with charact eristics as show n in Figure 5.11. Th e max - imum load on the feed er is 80 A pri mar

Show that the force exerted on each charge, Q. Consider two 1-C charges sep...

Q. Consider two 1-C charges separated by 1 min free space. Show that the force exerted on each is about one million tons.

Illustrate transformer coupling, Q. Illustrate Transformer coupling? In...

Q. Illustrate Transformer coupling? In this method the primary winding of the transformer acts as a collector load and the secondary winding transfers the a.c. output signal di

Main difference between a latch and a flip flop, Question: a) What is ...

Question: a) What is the main difference between a latch and a flip flop? b) Draw the logic diagram of an SR-latch using only NAND gates. c) A positive edge triggered

Explain about hybrid network, Q. Explain about Hybrid network? Hybrid n...

Q. Explain about Hybrid network? Hybrid network (sometimes known as a hybrid coilor duplex coil) in a telephone set is a special balanced transformer used to convert a two-wire

Circuite theory, In real life, transformers have losses which cause their b...

In real life, transformers have losses which cause their behaviour to deviate from the ideal. Explain the reasons for this non-ideal behaviour

Determine the voltage across each resistor, For the circuit of Fig: (i) ...

For the circuit of Fig: (i) using Kirchoff's Laws , find all the currents (ii)  determine the voltage across each resistor and check that all loops comply with KVL (iii

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd