First model of computation, Theory of Computation

Assignment Help:

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explicit instruction to clear.) Limit your program to a single unsigned integer variable, and limit your methods of accessing it to something like inc(i), dec(i) and a predicate zero?(i) which returns true i? i = 0. This integer has unbounded precision-it can range over the entire set of natural numbers-so you never have to worry about your counter over?owing. It is, however, restricted to only the natural numbers-it cannot go negative, so you cannot decrement past zero.

(a) Sketch an algorithm to recognize the language: {aibi| i ≥ 0}. This is the set of strings consisting of zero or more ‘a's followed by exactly the same number of ‘b's.

(b) Can you do this within the ?rst model of computation? Either sketch an algorithm to do it, or make an informal argument thatit can't be  done.

(c) Give an informal argument that one can't recognize the language: {aibici| i ≥ 0} within this second model of computation (i.e, with
a single counter)


Related Discussions:- First model of computation

Pushdown automator, draw pda for l={an,bm,an/m,n>=0} n is in superscript

draw pda for l={an,bm,an/m,n>=0} n is in superscript

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Finite languages and strictly local languages, Theorem The class of ?nite l...

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

Kleene closure, So we have that every language that can be constructed from...

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Alphabets - strings and representation, A finite, nonempty ordered set will...

A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd