First model of computation, Theory of Computation

Assignment Help:

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explicit instruction to clear.) Limit your program to a single unsigned integer variable, and limit your methods of accessing it to something like inc(i), dec(i) and a predicate zero?(i) which returns true i? i = 0. This integer has unbounded precision-it can range over the entire set of natural numbers-so you never have to worry about your counter over?owing. It is, however, restricted to only the natural numbers-it cannot go negative, so you cannot decrement past zero.

(a) Sketch an algorithm to recognize the language: {aibi| i ≥ 0}. This is the set of strings consisting of zero or more ‘a's followed by exactly the same number of ‘b's.

(b) Can you do this within the ?rst model of computation? Either sketch an algorithm to do it, or make an informal argument thatit can't be  done.

(c) Give an informal argument that one can't recognize the language: {aibici| i ≥ 0} within this second model of computation (i.e, with
a single counter)


Related Discussions:- First model of computation

Powerset construction, As de?ned the powerset construction builds a DFA wit...

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

Abstract model for an algorithm solving a problem, These assumptions hold f...

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Operations on strictly local languages, The class of Strictly Local Languag...

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Recognition problem, The Recognition Problem for a class of languages is th...

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat

D c o, Prove xy+yz+ýz=xy+z

Prove xy+yz+ýz=xy+z

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd