First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Complex root - fundamental set of solutions, Example : Back into the comple...

Example : Back into the complex root section we complete the claim that y 1 (t ) = e l t cos(µt)        and      y 2 (t) = e l t sin(µt) Those were a basic set of soluti

Index numbers, advantages and disadvantages of index numbers

advantages and disadvantages of index numbers

Algebraic models, Establish appropriate algebraic models for each of the fo...

Establish appropriate algebraic models for each of the following sets of data. You can use technology to assist. Plot them on grids and demonstrate how you have established each mo

Linear approximation method for interpolation, Linear Approxi...

Linear Approximation Method This is a rough and ready method of interpolation and is best used when the series moves in predicted interval

Chi square distribution, Chi Square Distribution Chi square was first ...

Chi Square Distribution Chi square was first utilized by Karl Pearson in 1900. It is denoted by the Greek letter χ 2 . This contains only one parameter, called the number of d

Basics of series - sequences and series, Series - The Basics That top...

Series - The Basics That topic is infinite series.  So just define what is an infinite series?  Well, let's start with a sequence {a n } ∞ n=1 (note the n=1 is for convenie

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd