Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length greater than n (where n is the number of states in the minimal DFA recognizing this language and, therefore, no greater than the number of states in this particular DFA) can be split into three components uvw, where |v| > 0 and uviw ∈ L(A) for all i ≥ 0. One consequence of this is that L(A) will be non-empty iff it includes some string of length strictly less than n. To see this, assume (for contradiction) that no string in L(A) was of length less than n. Let x be a minimal length string in L(A), so no string in A is shorter than x. By our assumption |x| ≥ n. Then the pumping lemma applies and x must have the form uvw, etc. But then uw ∈ L(A) also and |uw| < |uvw| contradicting the choice of x as a minimal length string. Hence the shortest string in L(A), whatever it is, must have length strictly less than n. To decide Emptiness, then, all we need to do is to systematically generate all strings in Σ∗ with length less than n (the de?nition of Σ∗ provides the foundation of an algorithm for doing this) and check to see if A accepts any of them. We return "True" iff it accepts at least one. (Thus, the Emptiness Problem reduces to the Recognition Problem.)
Theorem (Finiteness) The Finiteness Problem for Regular Languages is decidable.
how to find whether the language is cfl or not?
Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica
shell script to print table in given range
a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le
Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with
How useful is production function in production planning?
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included
Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd