Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the Myhill graph is acyclic, then no path from x to x can be longer than card(Σ) + 2, since otherwise some node would have to occur at least twice in the path.
The question of finiteness of L(A), then, can be reduced to the question of acyclicity of the corresponding Myhill graph. And we established that there is an algorithm for testing acyclicity of graphs in Algorithms and Data Structures. Our algorithm for deciding finiteness of L(A) just interprets A as a graph and calls the algorithm for deciding acyclicity as a subroutine.
We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one
The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu
Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about
The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p
Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a
Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne
how to prove he extended transition function is derived from part 2 and 3
Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)
Rubber shortnote
. On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The bonds paid interest semiannually at 5%. The bonds had a term of 20 years. At the time of issuance, the market r
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd