Finite-state automaton, Theory of Computation

Assignment Help:

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B not (there is only one such path). Those leading to region C end in b. Note that once we are in region C the question of whether we have seen bb or not is no longer relevant; in order to accept we must see aa and, since the path has ended with b, we cannot reach aa without ?rst seeing ba (hence, passing through region E). Finally, in region A we have not looked at anything yet. This where the empty string ends up.

331_Finite-state automaton.png

Putting this all together, there is no reason to distinguish any of the nodes that share the same region. We could replace them all with a single node. What matters is the information that is relevant to determining if a string should be accepted or can be extended to one that should be. In keeping with this insight, we will generalize our notion of transition graphs to graphs with an arbitrary, ?nite, set of nodes distinguishing the signi?cant states of the computation and edges that represent the transitions the automaton makes from one state to another as it scans the input. Figure 3 represents such a graph for the minimal equivalent of the automaton of Figure 1.


Related Discussions:- Finite-state automaton

Computation of an automaton, The computation of an SL 2 automaton A = ( Σ,...

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Hhhhhhhhhhhhhhhhh, Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh...

Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#

Computations of sl automata, We will specify a computation of one of these ...

We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

Deterministic finite state automaton, De?nition Deterministic Finite State ...

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Nfas with e-transitions, We now add an additional degree of non-determinism...

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Finite languages and strictly local languages, Theorem The class of ?nite l...

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd