Finite-state automaton, Theory of Computation

Assignment Help:

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B not (there is only one such path). Those leading to region C end in b. Note that once we are in region C the question of whether we have seen bb or not is no longer relevant; in order to accept we must see aa and, since the path has ended with b, we cannot reach aa without ?rst seeing ba (hence, passing through region E). Finally, in region A we have not looked at anything yet. This where the empty string ends up.

331_Finite-state automaton.png

Putting this all together, there is no reason to distinguish any of the nodes that share the same region. We could replace them all with a single node. What matters is the information that is relevant to determining if a string should be accepted or can be extended to one that should be. In keeping with this insight, we will generalize our notion of transition graphs to graphs with an arbitrary, ?nite, set of nodes distinguishing the signi?cant states of the computation and edges that represent the transitions the automaton makes from one state to another as it scans the input. Figure 3 represents such a graph for the minimal equivalent of the automaton of Figure 1.


Related Discussions:- Finite-state automaton

Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

Concatenation, We saw earlier that LT is not closed under concatenation. If...

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Kleenes theorem, All that distinguishes the de?nition of the class of Regul...

All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat

Toc, how to understand DFA ?

how to understand DFA ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd