Finite-state automaton, Theory of Computation

Assignment Help:

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B not (there is only one such path). Those leading to region C end in b. Note that once we are in region C the question of whether we have seen bb or not is no longer relevant; in order to accept we must see aa and, since the path has ended with b, we cannot reach aa without ?rst seeing ba (hence, passing through region E). Finally, in region A we have not looked at anything yet. This where the empty string ends up.

331_Finite-state automaton.png

Putting this all together, there is no reason to distinguish any of the nodes that share the same region. We could replace them all with a single node. What matters is the information that is relevant to determining if a string should be accepted or can be extended to one that should be. In keeping with this insight, we will generalize our notion of transition graphs to graphs with an arbitrary, ?nite, set of nodes distinguishing the signi?cant states of the computation and edges that represent the transitions the automaton makes from one state to another as it scans the input. Figure 3 represents such a graph for the minimal equivalent of the automaton of Figure 1.


Related Discussions:- Finite-state automaton

Local suffix substitution closure, The k-local Myhill graphs provide an eas...

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Non-determinism - recognizable language, Our DFAs are required to have exac...

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne

Java programming, 1. An integer is said to be a “continuous factored” if it...

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Production, How useful is production function in production planning?

How useful is production function in production planning?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd