Finite difference method, Mathematics

Assignment Help:

2014_finite.png

Two reservoirs of equal cross sectional areas (315 m2) and at equal elevations are connected by a pipe of length 20 m and cross sectional area 3 m2. The reservoir on the left (reservoir 1) is filled with a liquid of mass density 1000 kg/m3. The pressure at the bottom of reservoir 1 (that is, p1) is 39000 N/m2. The second reservoir and the connecting pipe are initially empty. The acceleration due to gravity is 9.8 m/s2.

The following assumptions apply. One can ignore the effects of friction, form losses and the elevation differences along the path of the connecting pipe. The fluid is incompressible and inviscid. Flow through the connecting pipe is started by the instantaneous, full opening of the valve at the bottom of reservoir 1.

Using the finite difference method, write a Fortran program that predicts the behavior of the system for 200 seconds following the opening of the valve. Assume a timestep size of

0.1 sec. The program must read the above data (with the exception of the acceleration due to gravity and problem duration time of 200 seconds) from an input file and generate an output file. Run the following four cases;

a) one for the above data,

b) identical to case (a) but with the cross-sectional area of the second reservoir, A2, modified to 200 m2,

c) identical to case (a) but with the length of the connecting pipe, L, modified to 40 m, and

d) identical to case (a) but with the cross sectional flow area of the connecting pipe, Ap, modified to 6 m2.

The output file must include the following information:

Modeling and Simulation for Mechanical and Nuclear Engineers -

  • the date and time of the run,
  • a summary of the input data values, including units of measurement,
  • the maximum value of the volumetric flow rate, qv, through the connecting pipe(m3/s),
  • the maximum depths of the water in meters in each reservoir during the transient,
  • the maximum pressure at the exit of each reservoir (p1 and p2) during the transient (N/m2), and
  • a table of the volumetric flow rate through the connecting pipe (m3/s), the depth of water in each reservoir in meters, and the pressures p1 and p2 as a function of time.

The deliverables are:

  • the Fortran source code listing,
  • the input and output files for the four cases, and
  • the following plots as a function of time for each case:

the volumetric flow rate through the connecting pipe,

a comparison of the values of p1 and p2, and

a comparison of the fluid depth in each reservoir.

Plots should have appropriately labeled axes. The y-axis parameter value may be normalized if you wish.

In the text of the transmitting email answer the following:

1. explain the differences in the results of the four cases in terms of changes to the system's fluid capacitance Cf and fluid inductance If, and

2. Explain how this system relates to that of the unsteady flow in a U-tube discussed in class. For example, all else being equal, does the period of oscillation of the liquid in this system, like that of the U-tube system, vary as the square root of the length of the connecting pipe? Back up your answer either by reference to the required cases or to additional cases that you run.


Related Discussions:- Finite difference method

Determine the area of the matting, A circular print is being matted in a sq...

A circular print is being matted in a square frame. If the frame is 18 in by 18 in, and the radius of the print is 7 in, what is the area of the matting? (π = 3.14) a. 477.86 in

3/8:5/9, how do I change this ratio to a fraction

how do I change this ratio to a fraction

Sketch the graph of the derivative of this function f '( x), Below is the s...

Below is the sketch of a function f ( x ) . Sketch the graph of the derivative of this function f ′ ( x ) . Solution : At first glance it seems to an all however impossib

Word problems, A baseball card was worth $5.00 in 1940. It doubled in value...

A baseball card was worth $5.00 in 1940. It doubled in value every decade. How much was it worth in 2000?

Logarithmic form and exponential form, Logarithmic form and exponential for...

Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have y= log b x          is equivalent to                  x= b y The first one is called

Round 14.851 to the nearest tenth, Round 14.851 to the nearest tenth? T...

Round 14.851 to the nearest tenth? The tenths place is the ?rst number to the right of the decimal. Here the number 8 is in the tenths place. To decide whether to round up or

Prove that rb is a tangent to the circle, QR is the tangent to the circle w...

QR is the tangent to the circle whose centre is P. If QA ||  RP and AB is the diameter, prove that RB is a tangent to the circle.

Write down a game each for teach maths to children, Write down a game each ...

Write down a game each to teach children i) multiplication, ii) what a circle is, iii) estimation skills. Also say what you expect the child to know before you try to t

Introduction to learning to count, INTRODUCTION : Most of us, when plannin...

INTRODUCTION : Most of us, when planning the first mathematical experience for three-year olds, think in terms of helping them memorise numbers from 1 to 20. We also teach them to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd