Find the solution to initial value problem, Mathematics

Assignment Help:

Illustration:  Find the solution to the subsequent IVP.

ty' + 2y = t2 - t + 1,      y(1) = ½

Solution:

Initially divide via the t to find the differential equation in the accurate form.

y' + (2/t) Y = t - 1 + 1/t

Currently let's find the integrating factor, µ(t):

753_Find the solution to initial value problem.png

Currently, we require to simplify µ(t). Although, we can't utilize (11) as which needs a coefficient of one in front of the logarithm.  Thus, recall as

In xr = r In x

And rewrite the integrating factor in a form which will permit us to simplify this.

µ(t) = e 2In|t| = eIn|t|2 = |t|2 = t2

We were capable to drop the absolute value bars here as we were squaring the t, but frequently they can't be dropped therefore be careful along with them and don't drop them unless you identify that you can. Frequently the absolute value bars must continue

Here, multiply the rewritten differential equation but remember that we can't utilize the original differential equation here, through the integrating factor.

(t2y)' = t3 - t2 + t

Integrate both sides and resolve for the solution.

t2y = ∫t3 - t2 + t dt

= ¼t4 - ? t3 + t dt

 y(t) = ¼t2 - ? t3+ ½ + c/t2

At last, apply the initial condition to find the value of c.

½ = y(1) = ¼ - 1/3 + ½ + c ⇒ c= 1/12

The solution is afterward,

y(t) = ¼t2 - ? t3+ ½ + 1/12t2

Now is a plot of the solution.

1061_Find the solution to initial value problem1.png


Related Discussions:- Find the solution to initial value problem

Related to MCA, AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + ...

AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + 1)xyn+1 – (n2 + a2)yn = 0. Hence find the value of yn when x = 0. question #Minimum 100 words accepted#

Multiply the polynomials, Multiply following. (a) (4x 2 -x)(6-3x) (b)...

Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution  (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2  - x )(6 - 3x) = 24x 2 -

Hcf, the length of three pieces of ropes are 140cm,150cm and 200cm.what is ...

the length of three pieces of ropes are 140cm,150cm and 200cm.what is the greatest possible length to measure the given pieces of a rope?

Topological spease, let X be a nonempty set. let x belong to X. show that t...

let X be a nonempty set. let x belong to X. show that the collection l={ union subset of X : union = empty or belong U

Comperative statics, Discuss comparative statics,Market model and Nationa i...

Discuss comparative statics,Market model and Nationa income model

Initial conditions and boundary conditions, Initial Condition...

Initial Conditions and Boundary Conditions In many problems on integration, an initial condition (y = y 0 when x = 0) or a boundary condition (y = y

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd