Find the solution to initial value problem, Mathematics

Assignment Help:

Illustration:  Find the solution to the subsequent IVP.

ty' + 2y = t2 - t + 1,      y(1) = ½

Solution:

Initially divide via the t to find the differential equation in the accurate form.

y' + (2/t) Y = t - 1 + 1/t

Currently let's find the integrating factor, µ(t):

753_Find the solution to initial value problem.png

Currently, we require to simplify µ(t). Although, we can't utilize (11) as which needs a coefficient of one in front of the logarithm.  Thus, recall as

In xr = r In x

And rewrite the integrating factor in a form which will permit us to simplify this.

µ(t) = e 2In|t| = eIn|t|2 = |t|2 = t2

We were capable to drop the absolute value bars here as we were squaring the t, but frequently they can't be dropped therefore be careful along with them and don't drop them unless you identify that you can. Frequently the absolute value bars must continue

Here, multiply the rewritten differential equation but remember that we can't utilize the original differential equation here, through the integrating factor.

(t2y)' = t3 - t2 + t

Integrate both sides and resolve for the solution.

t2y = ∫t3 - t2 + t dt

= ¼t4 - ? t3 + t dt

 y(t) = ¼t2 - ? t3+ ½ + c/t2

At last, apply the initial condition to find the value of c.

½ = y(1) = ¼ - 1/3 + ½ + c ⇒ c= 1/12

The solution is afterward,

y(t) = ¼t2 - ? t3+ ½ + 1/12t2

Now is a plot of the solution.

1061_Find the solution to initial value problem1.png


Related Discussions:- Find the solution to initial value problem

Net Present Value, A business has the opportunity to expand by purchasing ...

A business has the opportunity to expand by purchasing a machine at a cost of £80,000. The machine has an estimated life of 5 years and is projected to generate a cashflow of £20,0

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

Standardization of variables, Standardization of Variables - Before we...

Standardization of Variables - Before we use the general distribution curve to determine probabilities of the continuous variables, we require standardizing the original units

Karls pearsons co-efficient of correlation, Aim: To test the significan...

Aim: To test the significant relationship between the accounting ratios of operating management and standard ideal ratios. Null Hypothesis(H 0 ) : There is no significa

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Estimate the greatest possible number of calculators, Martha has $20 to spe...

Martha has $20 to spend and would like to buy as several calculators as possible along with the money. The calculators that she needs to buy are $4.50 each. How much money will she

Differential equation (dy/dx) +x^2 = x^2*e^(3y), The general solution of th...

The general solution of the differential equation (dy/dx) +x^2 = x^2*e^(3y). Solution)(dy/dx) +x^2 = x^2*e^(3y) dy/dx=x 2 (e 3y -1) x 2 dx=dy/(e 3y -1) this is an elementar

Tower of hanoi, how to create an activity of tower of hanoi

how to create an activity of tower of hanoi

Describe about absolute values, Describe about Absolute Values ? When a...

Describe about Absolute Values ? When an integer is written with a vertical line on each side of the integer, it is called the absolute value of that integer. For example,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd