Find the solution to initial value problem, Mathematics

Assignment Help:

Illustration:  Find the solution to the subsequent IVP.

ty' + 2y = t2 - t + 1,      y(1) = ½

Solution:

Initially divide via the t to find the differential equation in the accurate form.

y' + (2/t) Y = t - 1 + 1/t

Currently let's find the integrating factor, µ(t):

753_Find the solution to initial value problem.png

Currently, we require to simplify µ(t). Although, we can't utilize (11) as which needs a coefficient of one in front of the logarithm.  Thus, recall as

In xr = r In x

And rewrite the integrating factor in a form which will permit us to simplify this.

µ(t) = e 2In|t| = eIn|t|2 = |t|2 = t2

We were capable to drop the absolute value bars here as we were squaring the t, but frequently they can't be dropped therefore be careful along with them and don't drop them unless you identify that you can. Frequently the absolute value bars must continue

Here, multiply the rewritten differential equation but remember that we can't utilize the original differential equation here, through the integrating factor.

(t2y)' = t3 - t2 + t

Integrate both sides and resolve for the solution.

t2y = ∫t3 - t2 + t dt

= ¼t4 - ? t3 + t dt

 y(t) = ¼t2 - ? t3+ ½ + c/t2

At last, apply the initial condition to find the value of c.

½ = y(1) = ¼ - 1/3 + ½ + c ⇒ c= 1/12

The solution is afterward,

y(t) = ¼t2 - ? t3+ ½ + 1/12t2

Now is a plot of the solution.

1061_Find the solution to initial value problem1.png


Related Discussions:- Find the solution to initial value problem

Calcilate the height of the cone of which the bucket , A bucket of height 8...

A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of its lower and upper ends as 3 cm and 9 cm respectively. Calculate

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

In an election contested between a and b determine vote, In an election con...

In an election contested between A and B, A obtained votes equal to twice the no. of persons on the electoral roll who did not cast their votes & this later number was equal to twi

Derivatives, Derivatives The rate of change in the value of a...

Derivatives The rate of change in the value of a function is useful to study the behavior of a function. This change in y for a unit change in x is

Boundary value problem, solve the in-homogenous problem where A and b are c...

solve the in-homogenous problem where A and b are constants on 0 ut=uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Logarithmic functions- general properties, Logarithmic functi...

Logarithmic functions have the following general properties If y = log a x, a > 0 and a ≠1, then The domain of the function

School mathematics, I am interested in school mathematics online assignment...

I am interested in school mathematics online assignments , homework help, projects etc. I have good knowledge of mathematics and experience of 15+ years teaching mathematics in cen

Properties of integer exponents, Note that there are two possible forms for...

Note that there are two possible forms for the third property. Usually which form you use is based upon the form you want the answer to be in. Note as well that several of these

Differential calculus, lim n tends to infintiy ( {x} + {2x} + {3x}..... +{n...

lim n tends to infintiy ( {x} + {2x} + {3x}..... +{nx}/ n2(to the square) )where {X} denotes the fractional part of x? Ans) all no.s are positive or 0. so limit is either positive

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd