Find the solution to initial value problem, Mathematics

Assignment Help:

Illustration:  Find the solution to the subsequent IVP.

ty' + 2y = t2 - t + 1,      y(1) = ½

Solution:

Initially divide via the t to find the differential equation in the accurate form.

y' + (2/t) Y = t - 1 + 1/t

Currently let's find the integrating factor, µ(t):

753_Find the solution to initial value problem.png

Currently, we require to simplify µ(t). Although, we can't utilize (11) as which needs a coefficient of one in front of the logarithm.  Thus, recall as

In xr = r In x

And rewrite the integrating factor in a form which will permit us to simplify this.

µ(t) = e 2In|t| = eIn|t|2 = |t|2 = t2

We were capable to drop the absolute value bars here as we were squaring the t, but frequently they can't be dropped therefore be careful along with them and don't drop them unless you identify that you can. Frequently the absolute value bars must continue

Here, multiply the rewritten differential equation but remember that we can't utilize the original differential equation here, through the integrating factor.

(t2y)' = t3 - t2 + t

Integrate both sides and resolve for the solution.

t2y = ∫t3 - t2 + t dt

= ¼t4 - ? t3 + t dt

 y(t) = ¼t2 - ? t3+ ½ + c/t2

At last, apply the initial condition to find the value of c.

½ = y(1) = ¼ - 1/3 + ½ + c ⇒ c= 1/12

The solution is afterward,

y(t) = ¼t2 - ? t3+ ½ + 1/12t2

Now is a plot of the solution.

1061_Find the solution to initial value problem1.png


Related Discussions:- Find the solution to initial value problem

Evaluate the log function, Evaluate the log function: Calculate 3log 1...

Evaluate the log function: Calculate 3log 10 2. Solution: Rule 3.             log  (A n ) = nlog b   A 3log 10  2 = log 10 (2 3 ) = log 10   8 = 0.903

Undetermined coefficients, UNDETERMINED COEFFICIENTS The way of Undeter...

UNDETERMINED COEFFICIENTS The way of Undetermined Coefficients for systems is pretty much the same to the second order differential equation case. The simple difference is as t

Analyze the dynamic path of pork prices, A well-known simple model, applica...

A well-known simple model, applicable for analysing boom-bust cycles in agriculture, but extendable to analysing boom-bust cycles in many different areas of economics is the hog cy

Volume of grains in the silo , The volume of grains in a silo at a particul...

The volume of grains in a silo at a particular time (measured in hours) is given by V (t) = 4t(3-t) m3. Find the rate of change of the volume of grains in the silo from first princ

TRIGONOMETRY, EXPLAIN ME ABOUT ITS FUNCTIONS.

EXPLAIN ME ABOUT ITS FUNCTIONS.

Constructions, Draw a line segment AB of length 4.4cm. Taking A as centre, ...

Draw a line segment AB of length 4.4cm. Taking A as centre, draw a circle of radius. 2cm and taking B as centre, draw another circle of radius 2.2cm. Construct tangents to each cir

Devision, how many times can u put 10000 into 999999

how many times can u put 10000 into 999999

Area under curve, Write a program to find the area under the curve y = f(x)...

Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b. The area under a curve between two points can b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd