Find the solution to initial value problem, Mathematics

Assignment Help:

Illustration:  Find the solution to the subsequent IVP.

ty' + 2y = t2 - t + 1,      y(1) = ½

Solution:

Initially divide via the t to find the differential equation in the accurate form.

y' + (2/t) Y = t - 1 + 1/t

Currently let's find the integrating factor, µ(t):

753_Find the solution to initial value problem.png

Currently, we require to simplify µ(t). Although, we can't utilize (11) as which needs a coefficient of one in front of the logarithm.  Thus, recall as

In xr = r In x

And rewrite the integrating factor in a form which will permit us to simplify this.

µ(t) = e 2In|t| = eIn|t|2 = |t|2 = t2

We were capable to drop the absolute value bars here as we were squaring the t, but frequently they can't be dropped therefore be careful along with them and don't drop them unless you identify that you can. Frequently the absolute value bars must continue

Here, multiply the rewritten differential equation but remember that we can't utilize the original differential equation here, through the integrating factor.

(t2y)' = t3 - t2 + t

Integrate both sides and resolve for the solution.

t2y = ∫t3 - t2 + t dt

= ¼t4 - ? t3 + t dt

 y(t) = ¼t2 - ? t3+ ½ + c/t2

At last, apply the initial condition to find the value of c.

½ = y(1) = ¼ - 1/3 + ½ + c ⇒ c= 1/12

The solution is afterward,

y(t) = ¼t2 - ? t3+ ½ + 1/12t2

Now is a plot of the solution.

1061_Find the solution to initial value problem1.png


Related Discussions:- Find the solution to initial value problem

Pre-calculus, finding the vertex for the function of the form f(x)=ax^2+bx...

finding the vertex for the function of the form f(x)=ax^2+bx+c

Concrete to abstract-how mathematical ideas grow, Concrete to Abstract :  ...

Concrete to Abstract :  Mathematics, like all human knowledge, grows out of our concrete experiences. Let us take the example of three-dimensional shapes. Think about how you came

#title., I need to follow the pattern .125,.25,.375,.5, ?

I need to follow the pattern .125,.25,.375,.5, ?

prove that x = 2h/3, A vertical post stands on a horizontal plane.  The an...

A vertical post stands on a horizontal plane.  The angle of elevation of the top is 60 o and that of a point x metre be the height of the post, then prove that x = 2 h/3 .

Homomorphism, Let G be a group acting on a set X. The action is called fait...

Let G be a group acting on a set X. The action is called faithful if for any g ≠ 1 ∈ G there exists an x ∈ X such that gx ≠ x. That is, only the identity fi xes everything. Prov

Give the proofs in mathematics, Give the Proofs in Mathematics ? 1 Two...

Give the Proofs in Mathematics ? 1 Two-column deductive proof Proof: Statements                                                              Reasons * Start with given c

Payoffs dominations, how do you no wich row or columms dominate other rows ...

how do you no wich row or columms dominate other rows or columms in a payoff

Solve the equation for x, Solve the equation for x and check each solution....

Solve the equation for x and check each solution. 2/(x+3) -3/(4-x) = 2x-2/(x 2 -x-12)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd