Find the solution of the system, Algebra

Assignment Help:

Example Solve out the following system of equations.

x2 + y = 10

2 x + y = 1

Solution

In linear systems we had the alternative of using either method on any given system.  Along with non-linear systems which will not always be the case. In the first equation both variables are squared and in the second equation both variables are to the first power. In other term, there is no way which we can use elimination here and thus we must use substitution.  Fortunately that isn't too bad to do for this system as we can easily solve the second equation for y and substitute this into the first equation.

y = 1 - 2x

x2 + (1 - 2 x )2  = 10

It is a quadratic equation which we can solve.

x2 + 1 - 4 x +4 x2  = 10

5x2 - 4 x - 9 = 0

( x + 1) (5x - 9) = 0     ⇒ x = -1, x = 9 /5

Thus, we have two values of x.  Now, we have to determine the values of y and we are going to ought to be careful to not make a common mistake here. We find out the values of y by plugging x into our substitution.

x = -1  ⇒      y = 1 - 2 (-1) = 3

x = 9/5 ⇒    y = 1 - 2 (9/5) = - 13/5

 

Now, only we have two solutions here.  Do not just begin mixing & matching all possible values of x & y into solutions. We get y = 3 as a solution ONLY if x = -1 and hence the first solution is, x = -1, y = 3

Likewise, we just get y = - 13/5 ONLY if x = 9/5 and so the second solution is,

                                                     x = 9 /5, y = - 13/5

Thus, we have two solutions. Now, as noted at the start of this section these two solutions will show the points of intersection of these two curves. As the first equation is a circle and the second equation is a line have two intersection points is definitely possible.  Following is a sketch of the two equations as a verification of this.

1462_Find the solution of the system.png

Note that while the two equations are a line & a circle as in the previous example we know that we will contain at most two real solutions as it is only possible for a line to intersect a circle zero, one, or two times.


Related Discussions:- Find the solution of the system

Example of distance - rate problems, Two cars are 500 miles apart & directl...

Two cars are 500 miles apart & directly moving towards each other.  One car is at a speed of 100 mph and the other is at 70 mph.  Supposing that the cars start at the same time how

Quiz, Solve 2x2 = 128. (Points : 1) {±8} {±6} {±64} ...

Solve 2x2 = 128. (Points : 1) {±8} {±6} {±64} {±32}

Homogeneous system of equations, The reduced row echelon form of  is equa...

The reduced row echelon form of  is equal to R =   (a)  What can you say about row 3 of A? Give an example of a possible third row for A. (b)  Determine the values of

Determine a list of all possible rational zeroes, Determine a list of all p...

Determine a list of all possible rational zeroes Let's see how to come up along a list of possible rational zeroes for a polynomial. Example    Find a list of all possible

., The number of calories needed on a daily basis for a moderately active m...

The number of calories needed on a daily basis for a moderately active male is found to be k(calories)= 1108 + ( w + h - a ) where w is his weight in pounds, h is his height in inc

One-to-one function, A function is called one-to-one if no two values of x ...

A function is called one-to-one if no two values of x produce the same y. It is a fairly simple definition of one-to-one although it takes an instance of a function which isn't one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd