Find the shortest sequence of moves that is to win the game, Game Theory

Assignment Help:

You and an opponent are seated at a table, and on the table is a square board. At each of the four corners of the board, there is a disc, each one red on one side and black on the other. You are blindfolded, and thus cannot see the configuration of the discs, but you claim that you can flip the discs such that they are all facing with the same color up. On each move, you can flip either one or two discs (either adjacent or diagonal to each other). If this results in a winning state, your opponent must announce that. Otherwise, your opponent may choose to rotate the board 0°, 90°, 180°, or 270°. Find the shortest sequence of moves that is guaranteed to win the game, no matter what rotations of the board are made. Be sure to include a proof that your solution is correct and that it is the shortest possible.


Related Discussions:- Find the shortest sequence of moves that is to win the game

Difference monopolistic competition and perfect competition, What is the di...

What is the different monopolistic competition and perfect competition? Monopolistic Competition versus Perfect Competition Into the long-run equilibrium of a monopolistical

Reverse auction, While ancient auctions involve one seller and plenty of co...

While ancient auctions involve one seller and plenty of consumers, a reverse auction typically involves several sellers and one buyer. for instance, procurement auctions are used t

Bidding ring, A set of colluding bidders. Ring participants agree to rig bi...

A set of colluding bidders. Ring participants agree to rig bids by agreeing not to bid against each other, either by avoiding the auction or by placing phony (phantom) bids.

Game playing in class:adding numbers—win at 100, GAME PLAYING IN CLASS GAME...

GAME PLAYING IN CLASS GAME 1 Adding Numbers—Win at 100 This game is described in Exercise 3.7a. In this version, two players take turns choosing a number between 1 and 10 (inclus

Rollback , Rollback (often referred to as backward induction) is an iterati...

Rollback (often referred to as backward induction) is an iterative method for solving finite in depth kind or sequential games. First, one determines the optimal strategy of the pl

Nash equilibrium, A Nash equilibrium, named when John Nash, may be a set of...

A Nash equilibrium, named when John Nash, may be a set of methods, one for every player, such that no player has incentive to unilaterally amendment her action. Players are in equi

Write two methods for the mouse trap game, Write two methods for the mouse ...

Write two methods for the mouse trap game (using your board created in Assignment 3) and an event handler (another method) to test the two methods. 1. world.raise(item) where

Probability and expected utility, PROBABILITY AND EXPECTED UTILITY Most...

PROBABILITY AND EXPECTED UTILITY Most students know the elementary combinatorial rules for probability algebra and need only a refresher with some exam- ples. We have used card

Tit for tat, A type of trigger strategy sometimes applied to the repeated P...

A type of trigger strategy sometimes applied to the repeated Prisoner's Dilemma during which a player responds in one amount with identical action her opponent utilized in the last

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd