Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Introduction of curves and surfaces, Introduction of Curves and Surfaces ...

Introduction of Curves and Surfaces This section has covered the methods of generating polygons, closed and curves surfaces. Under those methods we have discussed different ty

What is rotation, What is rotation?  A 2-D rotation is completed by rep...

What is rotation?  A 2-D rotation is completed by repositioning the coordinates with a circular path, in the x-y plane by making an angle with the axes. The transformation is g

Clip a line segment - cyrus beck line clipping algorithm, How does the Cyru...

How does the Cyrus Beck line clipping algorithm, clip a line segment whether the window is non convex? Solution : see the following figure 13, now the window is non-convex in s

Object oriented tools, Object Oriented Tools: In such authoring systems, m...

Object Oriented Tools: In such authoring systems, multimedia components and events turn into objects that live in hierarchical order of parent and child relations. Messages are pa

Briefly describe the variants of the interaction model, Question: a) Th...

Question: a) The implications of transparency are a major influence on the design of system software. There are eight forms of transparency. Name and give a small description o

Perspective projections - transformation, Perspective Projections - Transfo...

Perspective Projections - Transformation In this projection the center of projection is at limited distance. This projection is termed as perspective projection since in this

Transformation, determine the form of the transformation matrix for a refle...

determine the form of the transformation matrix for a reflection about an arbitrary line with equation y=mx+b.

Important points for bresenham line generation algorithm, Important points ...

Important points for Bresenham Line Generation Algorithm Note: Bresenhams algorithm is generalised to lines along with arbitrary slopes with identifying the symmetry

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd