Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Briefly explain how you could create the gun barrel effect, Question 1: ...

Question 1: (a) Describe what you understand by Rotoscoping in Graphic effects. Give details how Rotoscoping could be achieved in After Effects CS3. (b) Using one algorithm

Basic graphics and mouse events, For this assignment, you will program a ga...

For this assignment, you will program a game called Pig. Pig is a two-player game where players compete to be the first to reach (or surpass) 100 points. Pig usually involves playe

What is aspect ratio, Define  Aspect ratio- Aspect ratio: The ratio ...

Define  Aspect ratio- Aspect ratio: The ratio of vertical points to horizontal points necessary to produce equal –length lines in both directions on the screen, is called as

Determine the advantages of raster-scan systems, Determine the advantages o...

Determine the advantages of raster-scan systems (i)  Rasterisation is now performed faster since a special purpose processor is used. (ii)  The CPU is not slowed down by the

Image processing process, Image Processing Process Images are the last ...

Image Processing Process Images are the last product of most processes in computer graphics. The ISO that is International Standards Organization explains computer graphics as

Languge, what languge do computers speak

what languge do computers speak

Explain reflection, What is reflection?  The reflection is actually the...

What is reflection?  The reflection is actually the transformation that produces a mirror image of an object. For this use some angles and lines of reflection.

., Define the working procedure of CRT with diagram

Define the working procedure of CRT with diagram

Scaling, Scaling, shear, reflection and Viewing coordinates 1) Scaling,...

Scaling, shear, reflection and Viewing coordinates 1) Scaling, shear and reflection operations have natural extensions to 3D.    2)  Viewing coordinates are the coordinates

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd