Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Define affine transformation, Define Affine transformation?  A coordina...

Define Affine transformation?  A coordinate transformation of the form X= axxx +axyy+bx, y 'ayxx+ayy y+by  is known as a two-dimensional affine transformation. Every of the tra

Two point and three point perspective transformations, Two-Point and Three-...

Two-Point and Three-Point Perspective transformations The two-point perspective projection can be acquired by rotating about one of the principal axis only and projecting upon

Projections - 3d primitive and composite transformations, Projections W...

Projections When all display devices are 2D, you need to devise methods that give a realistic view of a 3D scene onto 2D display. With more and more devices coming in the marke

Delta-delta arrangement and in-line arrangement, Delta-Delta Arrangement an...

Delta-Delta Arrangement and In-Line Arrangement There are two types of shadow masks available, delta-delta arrangement and in-line arrangement. The in-line arrangement refers t

Determine the steps uses in cohen sutherland line clipping, Steps uses in t...

Steps uses in the Cohen Sutherland Line Clipping Algorithm are: Figure: Steps for Cohen Sutherland Line Clipping STEP 1: Input:  x L , x R , y T , y B

Compression methods utilized for digital video, Compression methods utilize...

Compression methods utilized for digital video can be categorized in three major groups: General reason compression techniques can be utilized for any type of data. Intr

Use of interactive multimedia in education, Use of Interactive Multimedia i...

Use of Interactive Multimedia in Education Virtual reality, where 3-D experimental training can simulate real situations. Computer simulations of things too expensive,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd