Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Clip a line segment - cyrus beck line clipping algorithm, How does the Cyru...

How does the Cyrus Beck line clipping algorithm, clip a line segment whether the window is non convex? Solution : see the following figure 13, now the window is non-convex in s

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

What is a model sheet?, Question 1 Briefly explain the twelve principles o...

Question 1 Briefly explain the twelve principles of animation Question 2 Explain the methods to set-up pre and post-infinity curves Question 3 What is a model sheet? Exp

Scenes - polygon rendering and ray tracing methods, Scenes - polygon render...

Scenes - polygon rendering and ray tracing methods In the context of ray tracing, a scene is a set of objects and light sources which will be viewed through a camera. All of

Sequencing of animation design, Sequencing of Animation Design Previous...

Sequencing of Animation Design Previously we have discussed many things regarding the traditional and current trends of computer created animation although now it is time to pr

Graphical User interface and interactive input methods, all details of Grap...

all details of Graphical User interface and interactive input methods

#title., WHAT IS PAINTERS ALGORITHM?

WHAT IS PAINTERS ALGORITHM?

What is persistence, Persistence: How long they continue to emit light (...

Persistence: How long they continue to emit light (that is, have excited electrons returning to the ground state) after the CRT beam is removed. Persistence is defined as the ti

Image precision, what is image precision in computer graphics

what is image precision in computer graphics

Transformation for isometric projection - transformation, Transformation fo...

Transformation for Isometric projection - Transformation Suppose that P(x,y,z) be any point in a space.  Assume as a given point P(x,y,z) is projected to the P'(x'y',z') on t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd