Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

What is scaling and shearing, What is scaling and shearing? The scaling...

What is scaling and shearing? The scaling transformations alters the shape of an object and can be carried out  by multiplying every vertex (x,y) by scaling factor Sx, Sy where

Scripting systems- computer animation, Scripting Systems- Computer Animatio...

Scripting Systems- Computer Animation Scripting Systems are the earliest type of motion control systems. Scripting systems permit object specifications and animation sequenc

Point clipping - 2-d viewing and clipping, Point clipping - 2-d viewing and...

Point clipping - 2-d viewing and clipping Point clipping is the method related to suitable display of points in the scene, though this type of clipping is utilized less freque

Illustrate the advantages of using virtual reality, Illustrate the Advantag...

Illustrate the Advantages of using virtual reality - it's safer (As techniques can be tried out in advance without the dangers of real operation for example maintaining a nucle

Linearly interpolate - modeling and rendering, Linearly interpolate - Model...

Linearly interpolate - Modeling and Rendering I 4 = I 1 + t (I 2 - I 1 ); here t = (|y 1 - y 2 |)/(|y 1 - y 2 |) I D = I A + t (I B - I A ); here t = (|AD|)/(|AB|)

Scancode, what is mean by scan code

what is mean by scan code

Algorithms for filled-area primitives, Algorithms for filled-area primitive...

Algorithms for filled-area primitives These algorithms are classified into two categories (i)  Scan line algorithms (ii) Seed fill algorithms.

Transformation for 3-d rotation, Transformation for 3-D Rotation Rotat...

Transformation for 3-D Rotation Rotation in 3-dimensions is considerably more complicated then rotation in 2-dimensions. In 2-Dimentional, a rotation is prescribed via an angl

Define advanced graphics port, Q. Define Advanced Graphics Port? AGP si...

Q. Define Advanced Graphics Port? AGP signify Advanced (or Accelerated) Graphics Port. It's a connector standard defining a high speed bus connection between the microprocessor

Construction of a solid with a translational sweep, Construction of a Solid...

Construction of a Solid with a Translational Sweep Figure demonstrates construction of a solid along with a translational sweep. Translating the control points of the periodic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd