Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Polygon -rendering methods, Polygon -Rendering Methods Now we will see...

Polygon -Rendering Methods Now we will see the application of an illumination model to execute the rendering of standard graphics objects that are formed along with polygonal

Pitfalls in computer simulation - computer aided design, Pitfalls in comput...

Pitfalls in computer simulation Though generally avoided in computer simulations, in strict logic the rules governing floating point arithmetic even apply. For illustration, t

Steps for clip a line segment-pq, Steps for clip a line segment-PQ ...

Steps for clip a line segment-PQ Initially, find all the points of intersections of the line segment PQ along with the edges of the polygonal window and describe them eith

Specular reflection - polygon rendering & ray tracing method, Specular Refl...

Specular Reflection - Polygon Rendering & Ray Tracing Methods Specular reflection is while the reflection is stronger in one viewing direction that is a bright spot, termed

Sub classes of orthographic projection, Sub Classes of Orthographic Project...

Sub Classes of Orthographic Projection There are three ordinary sub-classes of Orthographic (axonometric) projections as: 1) Isometric: The direction of projection makes

Image space -approaches for visible surface determination, Image Space Appr...

Image Space Approach -Approaches for visible surface determination The initial approach as image-space, determines that of n objects in the scene is visible at every pixel in

Graphics, GRAPHICS: It is one of the core elements of any multimedia ...

GRAPHICS: It is one of the core elements of any multimedia application. We all have heard a well-known saying as "one picture conveys a message of 1000 words", hence without

Define the meaning of abbreviations of cmyk and rgb, QUESTION You are e...

QUESTION You are employed as a graphics designer in an advertising agency and recently completed a brochure artwork for a client. You need to send the file for printing before

Odd-even rule and non-zero winding number rule, What is the difference betw...

What is the difference between odd-even rule and non-zero winding number rule to identify interior regions of an object? Develop an algorithm for a recursive method for filling a 4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd