Find the normalization transformation, Computer Graphics

Assignment Help:

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the viewport.

2190_Find the normalization transformation 1.png

Figure: Example Transformations

Currently, we observe that the window edges are not parallel to the coordinate axes. Consequently we will first rotate the window regarding W hence it is aligned along with the axes.

Now, tan α= (3 -1)/(5-1) = 1/2

⇒ Sin α =    1 /√5;   Cos α = 2/√5

Now, we are rotating the rectangle in clockwise direction. Consequently α is negative which is, - α.

The rotation matrix about W (1, 1):

550_Find the normalization transformation 2.png

[TR.θ]W =

945_Find the normalization transformation 3.png

The x extent of the rotated window is the length of WX:

√(42 + 22) = 2√5

As same, the y extent is length of WZ that is,

√ (12 + 22) =   √5

For scaling the rotated window to the normalized viewport we calculate sx and sy as,

 sx = (viewport x extent)/(window x extent)= 1/2√5

sy = (viewport y  extent)/(window y extent) =   1/√5

925_Find the normalization transformation 4.png

As in expression (1), the common form of transformation matrix showing mapping of a window to a viewport:

[T] =

Within this problem [T] may be termed as N as this is a case of normalization transformation with,

xwmin = 1                        xvmin = 0

ywmin = 1                        yvmin = 0

 sx = 1/2√5      

 sy =  1/√5

Via substituting the above values in [T] which is N:

N =

1677_Find the normalization transformation 5.png

Here, we compose the rotation and transformation N to determine the needed viewing transformation NR.

 NR = N [TR.θ]W =

2096_Find the normalization transformation 6.png


Related Discussions:- Find the normalization transformation

Categorization of light resources - point source, Categorization of Light r...

Categorization of Light resources - Point source This is the easiest model for a light emitter. Currently rays from source obey radically diverging ways from the source positi

What you mean by parallel projection, What you mean by parallel projection?...

What you mean by parallel projection?  Parallel projection is one in which z coordinates is discarded and parallel lines from every vertex on the object are extended unless the

Polygon or area clipping algorithm, Polygon or Area Clipping Algorithm - Su...

Polygon or Area Clipping Algorithm - Sutherland-Hodgman Algorithm There are different algorithms as Liang-Barsky, Line clipping, Weiler-Atherton Polygon Clipping,

Polygon -rendering methods, Polygon -Rendering Methods Now we will see...

Polygon -Rendering Methods Now we will see the application of an illumination model to execute the rendering of standard graphics objects that are formed along with polygonal

Z-buffer, describe z-buffer algorithm removing hidden surface

describe z-buffer algorithm removing hidden surface

Explain the fundamentals of a compression, Question 1 Explain the funda...

Question 1 Explain the fundamental steps in digital image processing 2 Explain the terms reflection, complement and Translation with example diagrams 3 Explain about Imag

Dv encoder types, DV Encoder Types: While DV is captured in a computer thi...

DV Encoder Types: While DV is captured in a computer this is stored in an AVI file, that is Microsoft's standard file format used for video files. Video support in Windows is prov

Scale a sphere cantered on the point (1, Scale a sphere cantered on the poi...

Scale a sphere cantered on the point (1, 2, and 3) with radius 1, so that the new sphere has the same centre with radius 2.    Solution: Translate the sphere so that its centre

How graphics output changes according to dpi, Question : (a) List and d...

Question : (a) List and describe important aspects to take into consideration when looking at paper for print. (b) Describe clearly the meaning of the following words: I.

Shading , short note on shading

short note on shading

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd