Find the limit of given matrix, Mathematics

Assignment Help:

What is required: This assignment is to be resolved using Maple. You are to upload a single Maple worksheet with file name FamilynameFirstname.mw (e.g., CarrElliot.mw), using the Assignment Upload Page available under the main MAB312 Blackboard Assessment page. Please include your full name and student number in your Maple worksheet. Your worksheet should be documented thoroughly with comments, describing your method at each step in the solution.

Question

1. As of 2012, the population of Brisbane, Sydney and Melbourne is 2,074,222, 4,627,345 and 4,137,432, respectively. It is found that each year 5% of the residents of Brisbane move to Sydney, and 5% move to Melbourne. Of the residents of Sydney, 15% move to Brisbane and 10% move to Melbourne. And of the residents of Melbourne, 10% move to Brisbane and 5% move to Sydney. Neglecting other factors (e.g., births, deaths, immigration) and assuming that the remaining 90% of Brisbane residents, 75% of Sydney residents and 85% of Melbourne residents do not move, the population in each city k years after 2012 is given by

 x(k) = Ax(k-1), k =1,2,...

where the first, second and third entry of x corresponds to the population of Brisbane, Sydney and Melbourne, respectively; 

1251_matrix a.png

and x(0) = (2074222; 4627345; 4137432).

(a) Prove that x(k) = Akx(0).

(b) Show all working (do NOT use the Maple command Eigenvectors) in Maple to exhibit the diagonalisation of A and state the algebraic and geometric multiplicities of each eigenvalue .

(c) Use the diagonalisation of A in (b) to find the population of Brisbane, Sydney and Melbourne in 2020. Round your answers to the nearest integer.

(d) Use the diagonalisation of A to find 2062_limit k.png

(e) Use the result in (d) to determine1313_limit of x.png , that is, the long

term populations of each city. Further verify that (λmax, x(∞) is an

eigenpair of A, where λmax is the eigenvalue of largest magnitude.

2. Let

2137_matrix a a.png

CCA

(a) Find bases for the four fundamental subspaces of A and show all working. You are to use the Maple command RowOperation (look it up in the help menu) to perform all steps in the row reduction of the appropriate matrix to row echelon form (do NOT use Maple's GaussianElimination command).

(b) What constraint(s) must be placed on an arbitrary vector b 2 R4×1, such that the nonhomogeneous linear system Ax = b is consistent?

(c) Determine if b = (7;-1; 10;-4)T satisfies the constraint(s) found in (b) and if it does, establish the general solution to Ax = b.


Related Discussions:- Find the limit of given matrix

Equivalence relation, a) Let V = f1, 2, :::, 7g and define R on V by xRy if...

a) Let V = f1, 2, :::, 7g and define R on V by xRy iff x -  y is a multiple of 3. You should know by now that R is an equivalence relation on V . Suppose that this is so. Explain t

Cycloid - parametric equations and polar coordinates, Cycloid The param...

Cycloid The parametric curve that is without the limits is known as a cycloid.  In its general form the cycloid is, X = r (θ - sin θ) Y = r (1- cos θ)  The cycloid pre

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Linear programming , Use the simplex method to solve the following LP Probl...

Use the simplex method to solve the following LP Problem. Max Z = 107x1+x2+2x3 Subject to 14x1+x2-6x3+3x4=7 16x1+x2-6x3 3x1-x2-x3 x1,x2,x3,x4 >=0

Number and operations, 1a.if the williams spend $385 a month on food what i...

1a.if the williams spend $385 a month on food what is their monthly income

What was the original price of the coat before tax, Nick paid $68.25 for a ...

Nick paid $68.25 for a coat, including sales tax of 5%. What was the original price of the coat before tax? Since 5% sales tax was added to the cost of the coat, $68.25 is 105%

Calcilate the height of the cone of which the bucket , A bucket of height 8...

A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of its lower and upper ends as 3 cm and 9 cm respectively. Calculate

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

., round 64 to the nearest 10

round 64 to the nearest 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd