Find the limit of given matrix, Mathematics

Assignment Help:

What is required: This assignment is to be resolved using Maple. You are to upload a single Maple worksheet with file name FamilynameFirstname.mw (e.g., CarrElliot.mw), using the Assignment Upload Page available under the main MAB312 Blackboard Assessment page. Please include your full name and student number in your Maple worksheet. Your worksheet should be documented thoroughly with comments, describing your method at each step in the solution.

Question

1. As of 2012, the population of Brisbane, Sydney and Melbourne is 2,074,222, 4,627,345 and 4,137,432, respectively. It is found that each year 5% of the residents of Brisbane move to Sydney, and 5% move to Melbourne. Of the residents of Sydney, 15% move to Brisbane and 10% move to Melbourne. And of the residents of Melbourne, 10% move to Brisbane and 5% move to Sydney. Neglecting other factors (e.g., births, deaths, immigration) and assuming that the remaining 90% of Brisbane residents, 75% of Sydney residents and 85% of Melbourne residents do not move, the population in each city k years after 2012 is given by

 x(k) = Ax(k-1), k =1,2,...

where the first, second and third entry of x corresponds to the population of Brisbane, Sydney and Melbourne, respectively; 

1251_matrix a.png

and x(0) = (2074222; 4627345; 4137432).

(a) Prove that x(k) = Akx(0).

(b) Show all working (do NOT use the Maple command Eigenvectors) in Maple to exhibit the diagonalisation of A and state the algebraic and geometric multiplicities of each eigenvalue .

(c) Use the diagonalisation of A in (b) to find the population of Brisbane, Sydney and Melbourne in 2020. Round your answers to the nearest integer.

(d) Use the diagonalisation of A to find 2062_limit k.png

(e) Use the result in (d) to determine1313_limit of x.png , that is, the long

term populations of each city. Further verify that (λmax, x(∞) is an

eigenpair of A, where λmax is the eigenvalue of largest magnitude.

2. Let

2137_matrix a a.png

CCA

(a) Find bases for the four fundamental subspaces of A and show all working. You are to use the Maple command RowOperation (look it up in the help menu) to perform all steps in the row reduction of the appropriate matrix to row echelon form (do NOT use Maple's GaussianElimination command).

(b) What constraint(s) must be placed on an arbitrary vector b 2 R4×1, such that the nonhomogeneous linear system Ax = b is consistent?

(c) Determine if b = (7;-1; 10;-4)T satisfies the constraint(s) found in (b) and if it does, establish the general solution to Ax = b.


Related Discussions:- Find the limit of given matrix

Fractions, What fraction could you add to 4/7 to get a sum greater than 1

What fraction could you add to 4/7 to get a sum greater than 1

Determine the differential y = t 3 - 4t 2 + 7t, Determine the differentia...

Determine the differential for following.                                      y = t 3 - 4t 2 + 7t Solution Before working any of these we have to first discuss just

Find interval of function, Find interval for which the function f(x)=xe x(1...

Find interval for which the function f(x)=xe x(1-x)   is increasing or decreasing function

Sqares, Recently I had an insight regarding the difference between squares ...

Recently I had an insight regarding the difference between squares of sequential whole numbers and the sum of those two whole numbers. I quickly realized the following: x + (x+1)

Find out the probability, a)  A husband and wife appear in an interview for...

a)  A husband and wife appear in an interview for two vacancies in the same post.  The probability of husband's selection is 1/7 and that of wife's selection is 1/5.  What is th

Working definition of function, A function is an equation for which any x w...

A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation. There it is. i.e. the definition of functions w

System of differential equations for the population, Write down the system ...

Write down the system of differential equations for the population of both predators and prey by using the assumptions above. Solution We will start off through letting that

Relation and functions, Prove that if f and g are functions, then f interse...

Prove that if f and g are functions, then f intersect g is a function by showing f intersect g = glA A={x:g(x)=f(x)}

Estimate the total cost of the books, Frederick bought six books which cost...

Frederick bought six books which cost d dollars each. What is the total cost of the books? Frederick would multiply the number of books, 6, through how much each one costs, d.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd