Find the largest possible positive integer, Mathematics

Assignment Help:

Find the largest possible positive integer that will divide 398, 436, and 542 leaving remainder 7, 11, 15 respectively.

(Ans: 17)

Ans: The required number is the HCF of the numbers

Find the HCF of 391, 425 and 527 by Euclid's algorithm

∴ HCF (425, 391) = 17

Now we have to find the HCF of 17 and 527

527 = 17 ? 31 +0

∴ HCF (17,527) = 17

∴ HCF (391, 425 and 527) = 17

 


Related Discussions:- Find the largest possible positive integer

Arithmetic progressions, ARITHMETIC PROGRESSIONS: One  of the  endlessly a...

ARITHMETIC PROGRESSIONS: One  of the  endlessly alluring  aspects  of mathematics  is  that its thorniest  paradoxes have  a  way  of blooming  into  beautiful  theories Examp

Trignometry: sin-3x, sin(2x+x)=sin2x.cosx+cos2x.sinx              =2sinxco...

sin(2x+x)=sin2x.cosx+cos2x.sinx              =2sinxcosx.cosx+(-2sin^2x)sinx              =2sinxcos^2+sinx-2sin^3x             =sinx(2cos^2x+1)-2sin^3x =sinx(2-2sin^2x+1)-2sin^3

Calculate the edges in an undirected graph, Calculate the edges in an undir...

Calculate the edges in an undirected graph along with two vertices of degree 7, four vertices of degree 5, and the remaining four vertices of degree are 6? Ans: Total degree of

Example of multiplication, Example 1: Multiply 432 by 8. Solution: ...

Example 1: Multiply 432 by 8. Solution:        432 ×        8 --------------       3,456 In multiplying the multiplier in the units column to the multiplica

Probability exercise, 1. A psychologist developed a test designed to help p...

1. A psychologist developed a test designed to help predict whether production-line workers in a large industry will perform satisfactorily. A test was administered to all new empl

Properties of cross product - vector, Properties of Cross product If u,...

Properties of Cross product If u, v and w are vectors and c is a number then u → * v → = -v → * w →                                                       (cu → ) * v → =

Matrix inverse, Here we need to see the inverse of a matrix. Provided a squ...

Here we need to see the inverse of a matrix. Provided a square matrix, A, of size n x n if we can get the other matrix of similar size, B that, AB = BA = I n after that we call

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd