Find strongly connected components - dfs, Data Structure & Algorithms

Assignment Help:

A striking application of DFS is determine a strongly connected component of a graph.

Definition: For graph G = (V, E) , where V refer to the set of vertices and E refer to the set of edges, we described a strongly connected components as follows:

U refers to a sub set of V such that u, v linked to U such that, there is a path from u to v and v to u. That is, all of the pairs of vertices are reachable from each other.

In this section we shall use another concept called transpose of any graph. Given a directed graph G a transpose of G is described as GT. GT is described as a graph along with the same number of vertices & edges with only the direction of the edges being reversed. GT is attained by transposing the adjacency matrix of the directed graph G.

The algorithm for determining these strongly connected components uses the transpose of G, GT.

G = ( V, E ), GT = ( V, ET ), where ET = {  ( u, v ): ( v, u ) belongs to E }

1294_FINDING STRONGLY CONNECTED COMPONENTS.png

Figure: Transpose and strongly connected components of digraph of above Figure

Figure illustrates a directed graph along with sequence in DFS (first number of the vertex illustrates the discovery time and second number illustrates the finishing time of the vertex during DFS. Figure illustrates the transpose of the graph in Figure whose edges are reversed. The strongly connected components are illustrated in zig-zag circle in Figure.

1150_FINDING STRONGLY CONNECTED COMPONENTS1.png

To determine strongly connected component we begun with a vertex with the highest finishing time and begun DFS in the graph GT and then in decreasing order of finishing time. DFS along vertex with finishing time 14 as root determine a strongly connected component. Alike, vertices along finishing times 8 and then 5, while chosen as source vertices also lead to strongly connected components.


Related Discussions:- Find strongly connected components - dfs

Algorithms, Data array A has data series from 1,000,000 to 1 with step size...

Data array A has data series from 1,000,000 to 1 with step size 1, which is in perfect decreasing order. Data array B has data series from 1 to 1,000,000, which is in random order.

Storing street addresses with doubly linked lists, Write a C++ program with...

Write a C++ program with header and source les to store street addresses using the Doubly Linked List ADT. Modify the Node class from Lab Assignment 3 so that it becomes a node in

The best average behaviour, The best average behaviour is shown by  Qui...

The best average behaviour is shown by  Quick Sort

Union & intersection of two linklist, how to write an algorithm for unions ...

how to write an algorithm for unions & intersection of two linklists?

Tic Tac Toe game , Book to refer: Introduction to Algorithms, 3rd Ed, by Cl...

Book to refer: Introduction to Algorithms, 3rd Ed, by Clifford Stein, Thomas H. Cormen, Ronald Rivest, Charles E. Leiserson Question: Tic Tac Toe game -Design a GUI and implement

Explain memory allocation strategies, Memory Allocation Strategies If i...

Memory Allocation Strategies If it is not desirable to move blocks of due storage from one area of memory to another, it must be possible to relocate memory blocks that have be

Define order of growth, Define order of growth The  efficiency  analysi...

Define order of growth The  efficiency  analysis  framework  concentrates   on  the  order  of  growth  of  an  algorithm's   basic operation count as the principal indicator o

Demonstration of polynomial using linked list, Demonstration of Polynomial ...

Demonstration of Polynomial using Linked List # include # include Struct link { Char sign; intcoef; int expo; struct link *next; }; Typedefstruct link

Postfix expression, Ask question Write an algorithm for the evaluation of a...

Ask question Write an algorithm for the evaluation of a postfix expression using a stack#Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd