Find prime implicants, Mathematics

Assignment Help:

Let E = xy + y't + x'yz' + xy'zt', find

(a)   Prime implicants of E,  (b)  Minimal sum for E. 

Ans:  K -map for following boolean expression is given as:

1208_Find Prime implicants.png

Prime implicant is illustrated as the minimum term which covers maximum number of min terms. In the K-map prime implicant y't covers four (4) min terms. Likewise yz' and xz are other prime implicants. The minimal sum for E is [y't + yz' + xz].


Related Discussions:- Find prime implicants

Simultaneous equations by substitution, Simultaneous equations by substitut...

Simultaneous equations by substitution: Solve the subsequent simultaneous equations by substitution. 3x + 4y = 6      5x + 3y = -1 Solution: Solve for x: 3x = 6

Complex number, a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.fi...

a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

Parabola, please i need the answers to x^_7x+10 i want the vertex,axis of s...

please i need the answers to x^_7x+10 i want the vertex,axis of semetery,y intersect and the x intercept

Trignometry: sin-3x, sin(2x+x)=sin2x.cosx+cos2x.sinx              =2sinxco...

sin(2x+x)=sin2x.cosx+cos2x.sinx              =2sinxcosx.cosx+(-2sin^2x)sinx              =2sinxcos^2+sinx-2sin^3x             =sinx(2cos^2x+1)-2sin^3x =sinx(2-2sin^2x+1)-2sin^3

Function and relation, how to know if it is function and if is relation

how to know if it is function and if is relation

Find the largest clique, Generate G(1000,1/2) and find the largest clique ...

Generate G(1000,1/2) and find the largest clique you can.  A clique is a complete sub graph, that is, a set of vertices each pair of which is connected by an edge.

Determine the angle of depression to a ship, From the top of a 200 m lighth...

From the top of a 200 m lighthouse, the angle of depression to a ship in the ocean is 23 . How far is the ship form the base of the lighthouse?

Center of mass - applications of integrals, Center of Mass - Applications o...

Center of Mass - Applications of integrals In this part we are going to find out the center of mass or centroid of a thin plate along with uniform density ρ. The center of mass

Area of an ellipse, You know the experation for the area of a circle of rad...

You know the experation for the area of a circle of radius R. It is Pi*R 2 . But what about the formula for the area of an ellipse of semi-minor axis of length A and semi-major

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd