Find out the smallest force, Mechanical Engineering

Assignment Help:

Find out the smallest force:

A block weighing 800 N is raised up with the help of two 6o wedges B and C of negligible weights as illustrated in Figure. If the coefficient of static friction is 0.25 for all surfaces of contact, find out the smallest force P to be applied to raise the block A.

810_Find out the smallest force.png

Solution

Let us primary draw the free body diagrams for block A and wedges B and C. Block A is in contact with the vertical wall and the horizontal surface of block B. Thus, the normal reactions N1 and N2 will be perpendicular to the respective surfaces of contact as illustrated in Figure. The direction of movement of block A w.r.t. the wall being vertically upwards, the direction of frictional force shall be vertically downwards as friction opposes the motion. Likewise, the motion of block A w.r.t. wedge B being towards right, the direction of frictional force at the surface of contact of block A and the wedge shall be towards left as illustrated in the free body diagram of block A.

Figure 3.17 : Free Body Diagram of Block A

In the restricting condition, we know F1 = μ N1 and F2 = μ N2. Thus, there are only two unknowns : N1 and N2 and two equations of equilibrium being available, we may find the values of N1 and N2.

∑ Fx  = 0         ∴ N1  - F2  = 0

∴ N1  = F2  = 0.25 N 2

 ∑ Fy  = 0        ∴ N2  - W - F1 = 0

∴ N - 800 - 0.25 N1  = 0

∴ N 2  - 800 - 0.25 (0.25 N 2 ) = 0

∴ N 2  (1 - 0.0625) = 800

∴ N 2    =          800 / 0.9375

          = 853.33 N

Now let us draw the free body diagram of wedge B. Keeping in mind that the frictional forces oppose the motion, and the normal reactions, as the name recommend, are perpendicular to the surfaces of contact; the several forces acting on wedge B shall be as indicated in the free body diagram of wedge B illustrated in Figure.

Figure 3.18 : Free Body Diagram of Wedge B

Applying the equations of equilibrium, we have following:

∑ Fy  = 0 ∴ N3 cos 6o  - N2  - F3 sin 6o  = 0

 ∴ N3  cos 6o  - N 2  - 0.25 N3  sin 6o  = 0 (as F3 = 0.25 N3)

∴ 0.9945 N3  - 853.33 - 0.0261 N3  = 0

∴ N3 = 853.33 /0.9684 = 881.18 N

And, ∑ Fx  = 0

∴ F2  + F3  cos 6o  + N3  sin 6o - P = 0

 ∴ P = F2  + F3  cos 6o + N3  sin 6o

 = 0.25 N 2 + 0.25 N 3  cos 6o + N3  sin 6o

Putting the values of N2 and N3, we have

P = 0.25 × 853.33 + 0.25 × 881.18 cos 6o + 881.18 sin 6o

= 213.33 + 219.09 + 92.11

= 524.53 N

Thus, a force of 524.53 N shall be required to raise the block A.

You may also solve the problem by constructing the triangle of forces R1, R2 and W for block A, where R1 is the resultant reaction of N1 and F1 and R2 is the resultant reaction of N2 and F2.

As the three forces keep the block in equilibrium, the forces should be concurrent. This may be solved graphically or by using Lami's theorem for three concurrent forces.

By applying Lami's Theorem, we obtain:

W / sin (90o + 2 φ)       =         R1 / sin (180o - φ)  =   R2 / sin (90o  - φ)

where

φ = angle of friction

= tan -1  μ = tan -1  (0.25)

= 14.036 o

 ∴ R2  = W cos φ / cos 2 φ

= W cos 14.036o / cos 28.072o

 = (800 × 0.9701 )/0.8823

   = 879.61 N

810_Find out the smallest force.png

                                   Figure

Likewise, for wedge B, there are three forces acting : R2, R3 and P where,

R2 = Resultant reaction of N2 and F2

R3 = Resultant reaction of N3 and F3

The three forces acting shall be as illustrated in Figure

Figure 3.20

By applying Lami's theorem, we have

R2 / sin (90o + φ + 6o )   =        Psin (180o  - 2 φ - 6o ) =         R3 / sin (90o  + φ)

∴ P = R2 sin (2 φ + 6o)/ cos (φ + 6o)

= 879.61 sin 34.072o /cos 20.036o

= 524.53 N


Related Discussions:- Find out the smallest force

Special tool and cleaning of part general service tips , Special Tool: Use...

Special Tool: Use special tools wherever applicable. Special tools are designed to dismantle or assemble a specific part or assemblies without causing damage to them. Cleaning

Mechanism, how many links and joint does the automatic tool changer (ATC) m...

how many links and joint does the automatic tool changer (ATC) mechanism has?

Heat exchangers for plant design, Q. Heat exchangers for plant design? ...

Q. Heat exchangers for plant design? All exchangers shall be arranged to be readily dismantled for cleaning and maintenance. Cooling and heating streams generally flow against

Thermodynamics, describe equivalence of kelvin planck and clausious stateme...

describe equivalence of kelvin planck and clausious statement

Write the functional element of instrument system, a) Mention typical appli...

a) Mention typical application of instrument system with illustratation. b) Write down about the functional element of instrument system with examples. c) Define the key term

Belt drive, how will u designate a v belt

how will u designate a v belt

Explain armature core and armature winding - dc generator, Armature core an...

Armature core and armature winding  Armature is the rotating part of the machine. It is cylindrical in shape with slots on its outer periphery. It houses the armature conducto

Cad, nc & cnc machines

nc & cnc machines

Draw shear and moment diagrams, Determine the analytical solution for the m...

Determine the analytical solution for the maximum stress of the beam shown; compare with stress results from SolidWorks. Draw shear and moment diagrams and print them from the beam

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd