Find out the slope and deflection at the free end:
Discover the slope and deflection at the free end of a cantilever shown in Figure. Take EI = 200 × 106 N-m2.
Solution
M =- 30 x - 60 [ x - 2] - 24 ( x - 3) (( x - 3)/ 2)
=- 30 x - 60 [ x - 2] - 12 [ x - 3]2 -------- (1)
EI d 2 y/ dx2 = M
=- 30 x - 60 [ x - 2] - 12 [ x - 3]2 ----------- (2)
EI (dy/ dx) = - 15 x - 30 [ x - 2] - 4 [ x - 3] + C1 --------- (3)
EIy =- 5 x - 10 [ x - 2] - [ x - 3] + C1 x + C2 ------------- (4)
Figure
Boundary conditions are :
At B, x = 5 m, dy/ dx = 0 ---------- (5)
At B, x = 5 m, y = 0 --------(6)
From Eqs. (3) and (5)
0 = - 15 × 52- 30 (5 - 2)2 - 4 (5 - 3)3 + C1
∴ C1 = 677 ---------- (7)
From Eqs. (4), (6) and (7)
0 =- 5 × 5 3- 10 (5 - 2)3 - (5 - 3) 4+ 677 × 5 + C2
∴ C2 =- 2474 -------- (8)
EI dy/ dx = - 15 x2 - 30 [ x - 2]2 - 4 [ x - 3]3 + 677 --------- (9)
EIy = - 15 x3 - 10 [ x - 2]3 - [ x - 3]4 + 677 x - 2474 --------- (10)
At free end, i.e. at A, x = 0, From Eq. (9)
θ = + 677 /EI =677 × 103/200´106 = 3385 × 10- 3 radians
From Eq. (10)
yA =- 2474/ EI =- 2474 × 103 × 103/200 × 106 = - 12.37 mm
= - 12.37 mm ( ↓ )