Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Problem 1. Find the maximum and the minimum distance from the origin to the ellipse
x2 + xy + y2 = 3.
Hints: (i) Use x2 + y2 as your objective function; (ii) You can assume that the constraint qualification condition and the second order conditions are satisfied in this problem, as well as in problems 2 and 3.
Problem 2. Maximize f (x, y, z) = yz + xz subject to y2 + z2 = 1 and xz = 3.
Problem 3. (a) Maximize f (x, y) = x2 + y2 subject to 2x + y ≤ 2, x ≥ 0 and y ≥ 0.
(b) Use the Envelope Theorem to estimate the maximal value of the objective function in part
(a) when the first constraint is changed to 2x+ 9/8y ≤ 2, the second constraint is changed to x ≥ 0.1,and the third to y ≥ -0.1.
whats 2x2
what is 3/2 - 1/2
y'' + 2y = 2 - e-4t, y(0) = 1 use euler''s method with a step size of 0.2 to find and approximate values of y
i need help in math
((1/x^1/2-(x-1)^1/2)+(1/(5-3(x-1)^2)^1/2)
Expected opportunity loss or EOL method EOL method is aimed at minimizing the expected opportunity loss or OEL. The decision maker chooses the strategy along with the minimum e
Do you provide the answers to the Famous Numbers Exercise?
what is the simplest form of 6:9?
A,B,C are natural numbers and are in arithmetic progressions and a+b+c=21.then find the possible values for a,b,c Solution) a+b+c=21 a+c=2b 3b=21 b=7 a can be 1,2,3,4,5,6 c c
The 3-D Coordinate System We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing. We
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd