Find out the minimum distance from the origin, Mathematics

Assignment Help:

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse

x2 + xy + y2 = 3.

Hints: (i) Use x2 + y2 as your objective function; (ii) You can assume that the constraint qualification condition and the second order conditions are satisfied in this problem, as well as in problems 2 and 3.

Problem 2. Maximize f (x, y, z) = yz + xz subject to y2 + z2 = 1 and xz = 3.

Problem 3. (a) Maximize f (x, y) = x2 + y2 subject to 2x + y ≤ 2, x ≥ 0 and y ≥ 0.

(b) Use the Envelope Theorem to estimate the maximal value of the objective function in part

(a) when the first constraint is changed to 2x+ 9/8y ≤ 2, the second constraint is changed to x ≥ 0.1,and the third to y ≥ -0.1.

 


Related Discussions:- Find out the minimum distance from the origin

Finding the side of a triangle only using equations, In triangle DEF, angle...

In triangle DEF, angle E is congruent to angle F. If side DE = 3x-6, Side EF = x+2 and Side DF = 18-5x. Find the length of side DE

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Hypothesis testing of the difference between proportions, Hypothesis Testin...

Hypothesis Testing Of The Difference Between Proportions Illustration Ken industrial producer have manufacture a perfume termed as "fianchetto." In order to test its popul

Law of Cosines, The law of cosines can only be applied to acute triangles. ...

The law of cosines can only be applied to acute triangles. Is this true or false?

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exi...

y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exist only when 0 1 as the function y = f(a^x) itself does not exist.

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Speed, Town x and town y were 270km apart. a car started from town x toward...

Town x and town y were 270km apart. a car started from town x towards town y at a uniform speed of 60km/hr, while a motorcycle started from town y to town x at a uniform speed of 9

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd