Find out the minimum distance from the origin, Mathematics

Assignment Help:

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse

x2 + xy + y2 = 3.

Hints: (i) Use x2 + y2 as your objective function; (ii) You can assume that the constraint qualification condition and the second order conditions are satisfied in this problem, as well as in problems 2 and 3.

Problem 2. Maximize f (x, y, z) = yz + xz subject to y2 + z2 = 1 and xz = 3.

Problem 3. (a) Maximize f (x, y) = x2 + y2 subject to 2x + y ≤ 2, x ≥ 0 and y ≥ 0.

(b) Use the Envelope Theorem to estimate the maximal value of the objective function in part

(a) when the first constraint is changed to 2x+ 9/8y ≤ 2, the second constraint is changed to x ≥ 0.1,and the third to y ≥ -0.1.

 


Related Discussions:- Find out the minimum distance from the origin

Prove that a simple graph is connected, Prove that a simple graph is connec...

Prove that a simple graph is connected if and only if it has a spanning tree.    Ans: First assume that a simple graph G has a spanning  tree T.  T consists of every node of G.

Compare and contrast african immigrants, Compare and contrast African immig...

Compare and contrast African immigrants with our immigrant groups? How are they different? What are the implications of these differences for their adjustment to the larger society

Derive a boolean first-order query, Consider a database whose universe is a...

Consider a database whose universe is a finite set of vertices V and whose unique relation .E is binary and encodes the edges of an undirected (resp., directed) graph G: (V, E). Ea

Describe the laws of sines, Q. Describe the Laws of Sines? Ans. Up...

Q. Describe the Laws of Sines? Ans. Up to now we have dealt exclusively with right triangles.  The Law of Sines and the Law of Cosines are used to solve  oblique triangles

Theorem to computer the integral, Use green's theorem to computer the integ...

Use green's theorem to computer the integral F . dr where F = ( y^2 + x, y^2 + y) and c is bounded below the curve y= - cos(x),, above by y = sin(x) to the left by x=0 and to the r

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Trig, without using a calculator how would you know is cos theta(20) is gre...

without using a calculator how would you know is cos theta(20) is greater than cos theta (35)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd