Find out the joint distribution, Civil Engineering

Assignment Help:

Find out the joint distribution:

Let XI and X2 be two independent random variables each distributed uniformly in the interval [ 0, a ], where a > 0 is a constant. Find out the joint distribution of

Yl = Xl + X2 and Y2 = X1 - X2.

Instead, in vector notation, what is the distribution of Y = XA.

where

x = (X1,X2),Y= (Y1,Y2), A = 584_Find out the joint distribution.png? Find also the marginal distributions of Y1 and Y2. ?

Solution:

The joint pdf of X is

fx(x) = 1/a2, (x1,x2)? R(x)

= 0 otherwise.

Where

R(x) = {(x1,x2):0 ≤ x1 ≤ a, 0 ≤  x2 ≤ a}

The Jacobian of the transformation is

347_Find out the joint distribution1.png

Hence the pdf of Y is

fy(y) = 1/2a2, (y1,y2)? R(y)

= 0 otherwise.

where R ( y ) is the transformed region R ( x ) under the transformation Y = XA. The range of variation of Yl is clearly [ 0,2a ] and that of Y2 is [ - a, + a ]. However Yl and Y2 are not independent.

Since the inverse transformation is

X1= ½ (Y1 + Y2), X2 = ½ (Y1 - Y2) and 0≤ x1, x2 ≤ a,

the region R ( y ) is given by

R(y) = {( Y1 + Y2) : 0 ≤ Y1 + Y2 ≤ 2a, 0≤ Y1 - Y2 ≤2a},

The Relation between R ( x ) and R ( y ) is illustrated in Figure 2.

1951_Find out the joint distribution2.png

Figure: Relation between R ( x ) and R ( y ).

Note that the variables xl and x2 are independent and the region R ( x ) is such that for Xl - xl, the variation X2 does not depend on xl, but the region R ( Y ) is not of that type and the transformed variables Yl and Y2 are not independent.

The variable Yl varies in the interval [ 0, 2a]and for a fixed yl, if 0≤ y1≤ a, then y2 takes on values -y1≤y2≤ y1, while, if a< y1≤ 2a then y2 varies in the interval

-(2a-y1) <.y2 ≤ (2a - y1)

Integrating fy ( y ) with respect to y2, the marginal pdf of y2 is obtained as follows

fY1(y1) = 2283_Find out the joint distribution3.png 1/2a2 dy2 = y1/a2, for 0 ≤ y1 ≤ a

462_Find out the joint distribution4.png 1/2a2 dy2  = 2a-y1/a2, for a< y1 ≤ 2a

= 0 otherwise.

In a similar manner, we note that for a given Y2, if -a ≤ y2 ≤ 0 then

-y2 ≤ y1 ≤ 2a-y2, and if 0≤ y2 ≤ a then y2 ≤ y1 ≤ 2a - y2

Hence,

fY2(y2) = 119_Find out the joint distribution5.png1/2a2 dy1 = a+y2/a2, -a ≤ y2 ≤ 0

960_Find out the joint distribution6.png 1/2a2 dy1 = a-y2/a2 , 0< y2 ≤ a

= 0 otherwise.

Remarks:

The forms of pdf the marginal distributions In Example 5 are shown in Figure 3. Due to their triangular shape of pdf's, the distributions are called triangular distributions.

2222_Find out the joint distribution7.png

 

Figure: The forms of the marginal distributions of YI and Y2


Related Discussions:- Find out the joint distribution

Pumping for concreting works, Question What are the key problems if use pu...

Question What are the key problems if use pumping for concreting works ? Answer In pumping operation , force exerted by pumps have to overcome friction involving concrete an

Explain the maximum spacing of piles, Q. Explain the Maximum spacing of pil...

Q. Explain the Maximum spacing of piles? One of the factors which affect the distribution of loads from the structures to each pile is assumption of flexibility of the pile ca

Show the side clearance of pipes in trenches, Side clearance of pipes in tr...

Side clearance of pipes in trenches From the design point of view, it's predominant to minimize the width of pipe trenches due to thebelow reasons: (i)  Higher cost of exca

Soil Mechanics, Good evening. I have two homework projects from the Soil Me...

Good evening. I have two homework projects from the Soil Mechanics. I am interesting if anybody can solve them.

What is corrosion inhibitors, Q. What is Corrosion inhibitors? Corrosio...

Q. What is Corrosion inhibitors? Corrosion inhibitors are chemical substances that when added in small concentrations, stop or decrease the corrosion or reaction of metalwith t

Classification of timber based on grading, Classification Based on Grading:...

Classification Based on Grading: IS 883-1970 classifies the structural timber into 3 grades-select grade, grade I and grade II. The classification is depend on, defects, permi

Scale., how many scale are there and what are they use

how many scale are there and what are they use

Define friction pendulum bearing, Define Friction Pendulum Bearing? In ...

Define Friction Pendulum Bearing? In friction pendulum bearings, the lateral displacement is permitted at the interface of the bearing element between the superstructure and th

Define fathometer with the odolite - sounding/sensing device, Define Fathom...

Define Fathometer with the odolite - Sounding/Sensing Devices? The horizontal scale problem in use of Fathometer can be solved by using equipment, which combines a Fathometer w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd