Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

Upper limit of normal , Frequently, tests that yield abnormal results are r...

Frequently, tests that yield abnormal results are repeated for confirmation.  What is the probability that for a usual person a test will be at least 1.5 times as high as the upper

What is the square root of -i, To find sq root by the simple step... root (...

To find sq root by the simple step... root (-i)=a+ib............... and arg of -i= -pi/2 or 5pi/2

Classical probability, Classical Probability Consider the experiment o...

Classical Probability Consider the experiment of tossing a single coin. Two outcomes are possible, viz. obtaining a head or obtaining a tail. The probability that it is a tail

Drug administration, A drug is administrated once every four hours. Let D(n...

A drug is administrated once every four hours. Let D(n) be the amount of the drug in the blood system at the nth interval. The body eliminates a certain fraction p of the drug duri

Direct and inverse variation, A man can do a piece of work in 25 days how m...

A man can do a piece of work in 25 days how many people are required to complete same work in 15 days?

Explain that odd positive integer to be a perfect square, Show that for odd...

Show that for odd positive integer to be a perfect square, it should be of the form 8k +1. Let a=2m+1 Ans: Squaring both sides we get a2 = 4m (m +1) + 1 ∴ product of two

MATH HELP: URGENT, the andersons are buying a new home and need to fence th...

the andersons are buying a new home and need to fence their yard. the yard is 40 ft by 80 ft. each fencing section is 8ft. how many sections will they need?how many posts will they

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd