Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

Commercial arithmetic, if oranges are bought at the rate of 11 for rupees ...

if oranges are bought at the rate of 11 for rupees 10 and are sold at the rate of 10 for rupees 11, find the profit percent

The parallelogram, love is a parallelogram where prove that is a rectangle...

love is a parallelogram where prove that is a rectangle

Using euclid''s algorithm find the value of x & y, If d is the HCF of 30, 7...

If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans:    Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12

Calculate the average return, A department store faces a decision for a sea...

A department store faces a decision for a seasonal product for which demand can be high, medium or low. The purchaser can order 1, 2 or 3 lots of this product before the season beg

Application of derivatives, the base b of a triangle increases at the rate ...

the base b of a triangle increases at the rate of 2cm per second, and height h decreases at the rate of 1/2 cm per second. Find rate of change of its area when the base and height

How many feet is the new length if the new area is 141, A rectangular garde...

A rectangular garden has a width of 20 feet and a length of 24 feet. If each side of the garden is increased through the similar amount, how many feet is the new length if the new

Ploting of mathematical graphs, how can we represent this mathematical equa...

how can we represent this mathematical equation on a graph y=2x-1

Prove the boolean expression, Prove the subsequent Boolean expression: ...

Prove the subsequent Boolean expression: (x∨y) ∧ (x∨~y) ∧ (~x∨z) = x∧z Ans: In the following expression, LHS is equal to:   (x∨y)∧(x∨ ~y)∧(~x ∨ z) = [x∧(x∨ ~y)] ∨ [y∧(x∨

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd