Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

Geometry, calculate the area of a trapezoid with height 8cm base 18cm and 9...

calculate the area of a trapezoid with height 8cm base 18cm and 9cm

Find out function is increasing and decreasing, Find out where the followin...

Find out where the following function is increasing & decreasing. A (t ) = 27t 5 - 45t 4 -130t 3 + 150 Solution As with the first problem first we need to take the

Determine the properties and query are definable in datalog, We now focus o...

We now focus on the use of Datalog for defining properties and queries m graphs. (a) Suppose that P is some property of graphs definable in Datalog. Show drat P is preserved und

Find the value a2 + ß2 and (a - ß)2, If  α,β are the zeros of the polynom...

If  α,β are the zeros of the polynomial 2x 2 - 4x + 5 find the value of a) α 2 + β 2   b) (α - β) 2 . Ans : p (x) = 2 x 2 - 4 x + 5           (Ans: a) -1 , b) -6) α + β =

Which of the subsequent binomials could represent the length, The area of a...

The area of a rectangle is represented through the trinomial: x 2 + x - 12. Which of the subsequent binomials could represent the length and width? Because the formula for the

Solve 8 cos2 (1 - x ) + 13 cos(1 - x )- 5 = 0 trig function, Solve 8 cos 2 ...

Solve 8 cos 2 (1 - x ) + 13 cos(1 - x )- 5 = 0 . Solution Now, as specified prior to starting the instance this quadratic does not factor.  Though, that doesn't mean all i

Marketing management , Draw the typical profile(s) of Shoppers'' Stop custo...

Draw the typical profile(s) of Shoppers'' Stop customers segments.

Area between curves, Area between Curves In this section we will be fi...

Area between Curves In this section we will be finding the area between two curves. There are in fact two cases that we are going to be looking at. In the first case we des

Initial value problem, An IVP or Initial Value Problem is a differential eq...

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions. Illustration 3 : The subsequent is an IVP. 4x 2 y'' + 12y' +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd