Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

Differential equations and group methods, solve the differential equation ...

solve the differential equation dy/dx=f(y)x^n+g(y)x^m by finding a one-parameter group leaving it invariant

Operations research, scope of operation research and its limitations

scope of operation research and its limitations

Space geometry, a sketch of two dimensional system

a sketch of two dimensional system

Geometry., solve for y given that 3sin^2 y+cos y-1=0 for 0y360

solve for y given that 3sin^2 y+cos y-1=0 for 0y360

Distance traveled by car - word problem, Distance Traveled by Car - word pr...

Distance Traveled by Car - word problem: It takes a man 4 hours to reach a destination 1325 miles from his home. He drives to the airport at an average speed of 50 miles per h

Find the length of chord ab, If PA and PB are tangents to a circle from an ...

If PA and PB are tangents to a circle from an outside point P, such that PA=10cm and ∠APB=60 o . Find the length of chord AB.

the system by graphing, Suppose you are in the market for a new home and a...

Suppose you are in the market for a new home and are interested in a new housing community under construction in a another city. a) The sales representative later shows that there

Factorization example, Example  Factorize x 2 - 4x + 4. If ...

Example  Factorize x 2 - 4x + 4. If we substitute x = 1, the value of the expression will be (1) 2 - 4(1) + 4 = 1 If we substitute x = -1, the value o

Compute the linear convolution, Compute the linear convolution of the discr...

Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and the impulse response function of a filter h(n) = {2, 1, 3} using the DFT and the IDFT.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd