Find out the interval of validity, Mathematics

Assignment Help:

Without solving, find out the interval of validity for the subsequent initial value problem.

(t2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3

Solution

First, in order to use the theorem to determine the interval of validity we should write the differential equation in the exact form given in the theorem. Thus we will require dividing out through the coefficient of the derivative.

y' + (2/(t2 - 9))y = In |20 - 4t|/(t2 - 9)

Subsequently, we need to recognize where the two functions are not continuous. It will allow us to determine all possible intervals of validity for the differential equation. Thus, p(t) will be discontinuous at t = +3 since these points will provide a division by zero. Similarly, g(t) will also be discontinuous at t = + 3 and also t = 5 as at this point we will have the natural logarithm of zero. Remember that in this case we won't have to worry regarding to natural log of negative numbers due to the absolute values.

Here, with these points in hand we can break-up the real number line in four intervals and here both p(t) and g(t) will be continuous. These four intervals are as:

- ∞ < t < -3,     -3< t < 3,          3< t < 5,           5< t <

The endpoints of each of the intervals are points where as a minimum one of the two functions is discontinuous. It will guarantee that both functions are continuous everywhere in all intervals.

At last, let's identify the actual interval of validity for the initial value problem. The real interval of validity is the interval which will include to = 4. So, the interval of validity for the initial value problem is:

3 < t < 5

In this last illustration we require to be careful to not jump to the conclusion as another three intervals cannot be intervals of validity. Through changing the initial condition, in specific value of to, we can create any of the four intervals the interval of validity.

The first theorem needed a linear differential equation. There is a same theorem for non-linear first order differential equations. This theorem is not as useful for determining intervals of validity like the first theorem was thus we won't be liability all that much along with it.


Related Discussions:- Find out the interval of validity

#title, how do you do hard math!!!

how do you do hard math!!!

Standard hypothesis tests, Standard Hypothesis Tests In principal, we c...

Standard Hypothesis Tests In principal, we can test the significance of any statistic related to any type of probability distribution. Conversely we will be interested in a few

Mathematics is all around us-mathematics- in our lives, Mathematics Is All ...

Mathematics Is All Around Us :  What is the first thing you do when you get up? Make yourself a nice cup of tea or coffee? If so, then you're using mathematics! Do you agree? Cons

Division, Why do we start dividion operation from left to right?

Why do we start dividion operation from left to right?

Order to solve mathematical operations, Order to solve Mathematical Operati...

Order to solve Mathematical Operations: Example: Solve the following equation: (4 - 2) + (3 x 4) - (10 ÷ 5) - 6 =  ____________ Solution: a.         Perform ma

Arthemetic progreession, ball are arranged in rows to form an equilateral t...

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe

What is common triangles, Q. What is Common Triangles? Ans. Some t...

Q. What is Common Triangles? Ans. Some triangles appear more commonly than others. You will come across two triangles repeatedly as you learn more about trigonometry. T

Methods for doing integral, There are really three various methods for doin...

There are really three various methods for doing such integral. Method 1: This method uses a trig formula as,  ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd