Find out the hydrostatic force on the triangular plate, Mathematics

Assignment Help:

Find out the hydrostatic force on the following triangular plate that is submerged in water as displayed.

971_Find out the hydrostatic force on the triangular plate 5.png

Solution

The first thing to do here is set up an axis system.  Thus, let's redo the diagram above with the following axis system added in.

2306_Find out the hydrostatic force on the triangular plate 4.png

Thus, we are going to orient the x-axis that is why positive x is downward, x = 0 corresponds to the water surface and x = 4 refers to the depth of the tip of the triangle. After that we break up the triangle into n horizontal strips every equal width Δx and in each interval [xi-1,xi] select any point xi* .

To make the computations easier we are going to make two assumptions about these strips. First, we will ignore the fact that in fact the ends are going to be slanted and presume the strips are rectangular. If Δx is adequately small this will not affect our computations much.

Second, we will assume that Δx is small enough that the hydrostatic pressure on every strip is necessarily constant. Below is a representative strip.

463_Find out the hydrostatic force on the triangular plate 3.png

The height of this strip is Δx and the width is 2a.  We can use identical triangles to determine a as follows,

¾ = a / 4-xi*

= a 3- ¾ xi*

Here now, as we are assuming the pressure on this strip is constant, the pressure is illustrated by,

Pi = ρgd = 1000 (9.81) xi*

= 9810 xi*

and the hydrostatic force on every strip is,

Fi = Pi A = Pi (2aΔx)

= 9810 xi* (2) (3- (3/4) xi*)Δx

=19620 xi* (3- (3/4) xi*)Δx

The estimated hydrostatic force on the plate is then the sum of the forces on all the strips or,

424_Find out the hydrostatic force on the triangular plate 2.png

Taking the limit will obtain the exact hydrostatic force,

593_Find out the hydrostatic force on the triangular plate 1.png

By using the definition of the definite integral this is nothing much more than,

F = ∫40 19620 (3x - ¾ x2) dx

The hydrostatic force is then

F = ∫40 19620 (3x - ¾ x2) dx

= 19620 (3/2 x2 - ¼ x3) |40

= 156960 N


Related Discussions:- Find out the hydrostatic force on the triangular plate

Circle, Circle Well, let's recall just what a circle is. A circle is al...

Circle Well, let's recall just what a circle is. A circle is all the points which are the similar distance, r - called the radius, from a point, ( h, k ) - called the center. I

Rectilinear figures, what are rctilinear figures ? types of rectilinear fig...

what are rctilinear figures ? types of rectilinear figures and their propertiees.

Geometry, triangular with base AB = 48cm and height CH=16cm is inscribed a ...

triangular with base AB = 48cm and height CH=16cm is inscribed a rectangle MNPQ in which MN: MQ = 9:5 Find MN and MQ

What is the greatest common factor of 24 and 64, What is the greatest commo...

What is the greatest common factor of 24 and 64? List the factors of 24 and 64. The largest factor that they have in common is the greatest common factor. Factors of 24: 1,

Easy math margin percentage increase, If A = 100 and B = 44 then A1 =...

If A = 100 and B = 44 then A1 = 120 and B2 = 52.80 A is MAP and B is Tier 6. I need help to find a simple equation that I just cannot find. I just need the percentage

Determine the slope, Determine the slope following lines.  Sketch the graph...

Determine the slope following lines.  Sketch the graph of line.       The line which contains the two points (-2, -3) and (3, 1) .   Solution we'll need to do is employ

How to convert decimals to percentages, Q. How to Convert Decimals to Perce...

Q. How to Convert Decimals to Percentages? Ans. Remember that when you have a decimal number, the digits to the right of the decimal point have the following meaning:

Parallel and perpendicular lines, The last topic that we have to discuss in...

The last topic that we have to discuss in this section is that of parallel & perpendicular lines. Following is a sketch of parallel and perpendicular lines. Suppose that th

Eometyr, Lines EF and GH are graphed on this coordinate plane. Which point ...

Lines EF and GH are graphed on this coordinate plane. Which point is the intersection of lines EF and GH?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd