Find out the hydrostatic force on the triangular plate, Mathematics

Assignment Help:

Find out the hydrostatic force on the following triangular plate that is submerged in water as displayed.

971_Find out the hydrostatic force on the triangular plate 5.png

Solution

The first thing to do here is set up an axis system.  Thus, let's redo the diagram above with the following axis system added in.

2306_Find out the hydrostatic force on the triangular plate 4.png

Thus, we are going to orient the x-axis that is why positive x is downward, x = 0 corresponds to the water surface and x = 4 refers to the depth of the tip of the triangle. After that we break up the triangle into n horizontal strips every equal width Δx and in each interval [xi-1,xi] select any point xi* .

To make the computations easier we are going to make two assumptions about these strips. First, we will ignore the fact that in fact the ends are going to be slanted and presume the strips are rectangular. If Δx is adequately small this will not affect our computations much.

Second, we will assume that Δx is small enough that the hydrostatic pressure on every strip is necessarily constant. Below is a representative strip.

463_Find out the hydrostatic force on the triangular plate 3.png

The height of this strip is Δx and the width is 2a.  We can use identical triangles to determine a as follows,

¾ = a / 4-xi*

= a 3- ¾ xi*

Here now, as we are assuming the pressure on this strip is constant, the pressure is illustrated by,

Pi = ρgd = 1000 (9.81) xi*

= 9810 xi*

and the hydrostatic force on every strip is,

Fi = Pi A = Pi (2aΔx)

= 9810 xi* (2) (3- (3/4) xi*)Δx

=19620 xi* (3- (3/4) xi*)Δx

The estimated hydrostatic force on the plate is then the sum of the forces on all the strips or,

424_Find out the hydrostatic force on the triangular plate 2.png

Taking the limit will obtain the exact hydrostatic force,

593_Find out the hydrostatic force on the triangular plate 1.png

By using the definition of the definite integral this is nothing much more than,

F = ∫40 19620 (3x - ¾ x2) dx

The hydrostatic force is then

F = ∫40 19620 (3x - ¾ x2) dx

= 19620 (3/2 x2 - ¼ x3) |40

= 156960 N


Related Discussions:- Find out the hydrostatic force on the triangular plate

Elimination technique of linear equations, What is the Elimination techniqu...

What is the Elimination technique of Linear Equations?

Solve the linear equation, Solve the linear equation: The equation rel...

Solve the linear equation: The equation relating the pressure that is denoted by P, to the force, F & the area, A, over which the force is applied is P =F/A.  Solve this equat

Irregular shapes and solids, find the area of the irregular shape 2cm 4cm 4...

find the area of the irregular shape 2cm 4cm 4cm 2cm 5cm 5cm

Two circles touch internally, Two circles touch internally at a point P and...

Two circles touch internally at a point P and from a point T on the common tangent at P, tangent segments TQ and TR are drawn to the two circles. Prove that TQ = TR. Given:

Area between two curves, Area between Two Curves We'll start with the ...

Area between Two Curves We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Converting, I need help converting my project fractions to the number 1.

I need help converting my project fractions to the number 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd