Find out the dimensions of the field-optimization, Mathematics

Assignment Help:

We have to enclose a field along with a fence. We contain 500 feet of fencing material & a building is on one side of the field & thus won't require any fencing.  Find out the dimensions of the field which will enclose the largest area.

Solution                                                   

In the problems we will contain two functions. The first is the function which we are in fact attempting to optimize and the second is the constraint.   Sketching out the situation will frequently help us to arrive at these equations thus let's do that.

In this problem we desire to maximize the area of a field & we know that will utilizes 500 ft of fencing material.  Therefore, the area will be the function we are attempting to optimize and the amount of fencing is the constraint. The two equations for these are following,

Maximize : A = xy

Contraint : 500 = x + 2 y

We know how to determine the largest or smallest value of any function provided only it's got a single variable. The area function (as well as the constraint) contains two variables in it and so what we know about determining absolute extrema won't work. Though, if we solve out the constraint for one of the two variables we can substitute it into the area and then we will have a function of a single variable.

1192_optimization.png

Thus, let's solve out the constraint for x.  Note as well that we could have just as easily solved out for y however that would have led to fractions and therefore, in this case, solving for x will possibly be best.

                                                           x = 500 - 2 y

Substituting this in the area function specified a function of y.

                                         A ( y ) = (500 - 2 y ) y = 500 y - 2 y 2

Now we desire to find the largest value it will have on the interval [0,250].  Note as well that the interval corresponds to taking y = 0 (i.e. no sides to the fence) and y = 250 (that means only two sides & no width, also if there are two sides each have to be 250 ft to utilizes the whole 500ft).

Note as well that the endpoints of the interval won't make any sense through a physical standpoint if actually we desire to enclose some area since they would both give zero area. However, they do give us a set of limits on y and thus the Extreme Value Theorem tells us that we will contain a maximum value of the area somewhere among the two endpoints. 

Thus, recall that the maximum value of a continuous function (that we've got here) on a closed interval (that we also have here) will take place at critical points and/or end points. As already we've pointed out the end points in this case will give zero area and therefore don't make any sense. That means our only alternative will be the critical points.

Thus let's get the derivative and determine the critical points.

                                                   A′ ( y ) = 500 - 4 y

Setting this equivalent to zero & solving gives a lone critical point of y = 125.  Plugging this into the area specified an area of 31250 ft2. Therefore according to the method this have to be the largest possible area, as the area at either endpoint is zero.

At last, let's not forget to obtain the value of x and then we'll contain the dimensions since this is what the problem statement asked for. We can obtain the x by plugging in our y into the constraint.

                                          x = 500 - 2 (125) = 250

The dimensions of the field which will give the largest area, subject to the fact which we used exactly 500 ft of fencing material, are 250 x 125.


Related Discussions:- Find out the dimensions of the field-optimization

Multiples, The sum of the smallest and largest multiples of 8 up to 60 is?

The sum of the smallest and largest multiples of 8 up to 60 is?

Prove that the height of the cloud , HE IGHTS AND DISTANCES If the ...

HE IGHTS AND DISTANCES If the angle of elevation of cloud from a point 'h' meters above a lake is α and the angle of depression of its reflection in the lake is  β , prove

Operation research, approximate the following problem as a mixed integer pr...

approximate the following problem as a mixed integer program. maximize z=e-x1+x1+(x2+1)2 subject to x12+x2 =0

Ratios, a muffin recipe calls for three forth of a cup of sugar and one eig...

a muffin recipe calls for three forth of a cup of sugar and one eight of a cup of butter. travis accidentally put in one whole cup of butter. how much sugar does travis need to put

Evaluate the area of the region, Evaluate the area of the region. a...

Evaluate the area of the region. a. 478 units 2 b. 578 units 2 c. 528 units 2 d. 428 units 2   b. Refer to the diagram to evaluate the area of the shaded

Solve:, A Cleaning solution has 40% vinegar. Find the amount of vinegar in ...

A Cleaning solution has 40% vinegar. Find the amount of vinegar in 32 ounces of the solution>

Long distance calls cost x cent how much 5-minute call cost, A long distanc...

A long distance calls costs x cents for the first minute and y cents for every additional minute. How much would a 5-minute call cost? The cost of the call is x cents plus y ti

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

Logics Puzzle, It’s been a busy weekend for Larry. Five people in his neigh...

It’s been a busy weekend for Larry. Five people in his neighborhood left on vacation Saturday morning and each of them left a pet for Larry to care for until they return. It’s a go

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd