Find out the absolute extrema for function and interval, Mathematics

Assignment Help:

Find out the absolute extrema for the given function and interval.

 g (t ) = 2t 3 + 3t 2 -12t + 4 on [-4, 2]

Solution : All we actually need to do here is follow the process given above.  Thus, first notice that it is a polynomial and hence in continuous everywhere and in specific is then continuous on the given interval.

Now, we have to get the derivative so that we can determine the critical points of the function.

                      g ′ (t ) = 6t 2 + 6t -12 = 6 (t + 2) (t -1)

It looks like we'll contain two critical points, t = -2 and t = 1.  Note as well that we in fact desire something more than just the critical points. We just desire the critical points of the function which lie in the interval in question.  Both of these do fall within the interval as so we will employ both of them. That might seem like a silly thing to indicate at this point, however it is frequently forgotten, usually while it becomes important, and thus we will indicate it at every opportunity to ensure it's not forgotten.

Now we evaluate the function at the critical points & the end points of the interval.

g ( -2) = 24                                         g (1) = -3

g ( -4) = -28                                        g ( 2) = 8

Absolute extrema are the largest & smallest the function will ever be & these four points show the only places within the interval where the absolute extrema can take s place.  Thus, from this list we illustrates that the absolute maximum of g(t) is 24 & it takes place at t = -2 (a critical point) and the absolute minimum of g(t) is -28 that occurs at t = -4 (an endpoint).

In this instance we saw that absolute extrema can and will take place at both endpoints & critical points.


Related Discussions:- Find out the absolute extrema for function and interval

PROBABILITY, Find the probability of drawing a diamond card in each of the ...

Find the probability of drawing a diamond card in each of the consecutive draws from a well shuffled pack of cards,if the card drawn is not replaced after the first draw.

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

What percentage of the soda purchased was cola, 3/5 of the soda purchased a...

3/5 of the soda purchased at the football game was cola. What percentage of the soda purchased was cola? Change the fraction to a decimal through dividing the numerator through

Initial value problem, An IVP or Initial Value Problem is a differential eq...

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions. Illustration 3 : The subsequent is an IVP. 4x 2 y'' + 12y' +

What is the annual interest rate on an account in which earn, What is the a...

What is the annual interest rate on an account in which earns $948 in simple interest over 36 months along with an initial deposit of $7,900? Using the easy interest formula In

Differential calculus and probability, Josephine is constructing an open bo...

Josephine is constructing an open box by cutting the squares off the corners of a sheet of paper sized 20cm by 16cm. She is considering options of 3cm, 4cm and 5cm squares in order

Calculate plurality based on the number of voters and candid, Consider an e...

Consider an election with 721 voters. A) If there are 5 candidates, at least x votes are needed to have a plurality of the votes. Find x. B) Suppose that at least 73 votes are n

Find distance between points (b + c, Find the distance between the points (...

Find the distance between the points (b + c, c + a) and (c + a, a + b) . Ans : Use distance formula

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd