Find out the absolute extrema for function and interval, Mathematics

Assignment Help:

Find out the absolute extrema for the given function and interval.

 g (t ) = 2t 3 + 3t 2 -12t + 4 on [-4, 2]

Solution : All we actually need to do here is follow the process given above.  Thus, first notice that it is a polynomial and hence in continuous everywhere and in specific is then continuous on the given interval.

Now, we have to get the derivative so that we can determine the critical points of the function.

                      g ′ (t ) = 6t 2 + 6t -12 = 6 (t + 2) (t -1)

It looks like we'll contain two critical points, t = -2 and t = 1.  Note as well that we in fact desire something more than just the critical points. We just desire the critical points of the function which lie in the interval in question.  Both of these do fall within the interval as so we will employ both of them. That might seem like a silly thing to indicate at this point, however it is frequently forgotten, usually while it becomes important, and thus we will indicate it at every opportunity to ensure it's not forgotten.

Now we evaluate the function at the critical points & the end points of the interval.

g ( -2) = 24                                         g (1) = -3

g ( -4) = -28                                        g ( 2) = 8

Absolute extrema are the largest & smallest the function will ever be & these four points show the only places within the interval where the absolute extrema can take s place.  Thus, from this list we illustrates that the absolute maximum of g(t) is 24 & it takes place at t = -2 (a critical point) and the absolute minimum of g(t) is -28 that occurs at t = -4 (an endpoint).

In this instance we saw that absolute extrema can and will take place at both endpoints & critical points.


Related Discussions:- Find out the absolute extrema for function and interval

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprenesamples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers of

Linear function, find the temperature at which the celsius and farhenheit t...

find the temperature at which the celsius and farhenheit temperatures are numerically equl

Linear equation, The ratio between the length and breadth of a rectangular ...

The ratio between the length and breadth of a rectangular field is 11:7. The cost of fencing it is Rs. 75,000. Find the dimensions of the field

Variance, Variance Consider the example of investment opportunities. Th...

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo

Solve 2 ln (x) - ln (1 - x ) = 2 single logarithm, Solve 2 ln (√x) - ln (1 ...

Solve 2 ln (√x) - ln (1 - x ) = 2 . Solution: Firstly get the two logarithms combined in a single logarithm. 2 ln (√x) - ln (x  - l) = 2 ln ((√x) 2 ) ln (1 - x ) = 2

Venn diagram, A venn diagram is a pictorial representation of the sam...

A venn diagram is a pictorial representation of the sample space of an experiment. It is usually drawn as a rectangular figure representing the sample space and it cont

Geometry, Awhat is polygonesk question #Minimum 100 words accepted#

Awhat is polygonesk question #Minimum 100 words accepted#

Least common multiple (lcm), Before we look at this, let us learn wha...

Before we look at this, let us learn what a multiple is. Take any number say 3. Multiply this number with natural numbers. We obtain 3, 6, 9, 12, 15, 18,.........

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd