Find out the absolute extrema for function and interval, Mathematics

Assignment Help:

Find out the absolute extrema for the given function and interval.

 g (t ) = 2t 3 + 3t 2 -12t + 4 on [-4, 2]

Solution : All we actually need to do here is follow the process given above.  Thus, first notice that it is a polynomial and hence in continuous everywhere and in specific is then continuous on the given interval.

Now, we have to get the derivative so that we can determine the critical points of the function.

                      g ′ (t ) = 6t 2 + 6t -12 = 6 (t + 2) (t -1)

It looks like we'll contain two critical points, t = -2 and t = 1.  Note as well that we in fact desire something more than just the critical points. We just desire the critical points of the function which lie in the interval in question.  Both of these do fall within the interval as so we will employ both of them. That might seem like a silly thing to indicate at this point, however it is frequently forgotten, usually while it becomes important, and thus we will indicate it at every opportunity to ensure it's not forgotten.

Now we evaluate the function at the critical points & the end points of the interval.

g ( -2) = 24                                         g (1) = -3

g ( -4) = -28                                        g ( 2) = 8

Absolute extrema are the largest & smallest the function will ever be & these four points show the only places within the interval where the absolute extrema can take s place.  Thus, from this list we illustrates that the absolute maximum of g(t) is 24 & it takes place at t = -2 (a critical point) and the absolute minimum of g(t) is -28 that occurs at t = -4 (an endpoint).

In this instance we saw that absolute extrema can and will take place at both endpoints & critical points.


Related Discussions:- Find out the absolute extrema for function and interval

Calculate the probability, Calculate the introduction to Probability? P...

Calculate the introduction to Probability? Probability refers to the chance that an event will happen. Probability is presented as the ratio of the number of ways an event can

Functions of limits, Following is some more common functions that are "nice...

Following is some more common functions that are "nice enough". Polynomials are nice enough for all x's. If f ( x) = p ( x ) /q (x ) then f(x) will be nice enough provid

Complex roots - second order differential equations, We will be looking at ...

We will be looking at solutions to the differential equation, in this section ay′′ + by′ + cy = 0 Wherein roots of the characteristic equation, ar 2 + br + c = 0 Those

Find the shortest paths in the digraph, 1. a) Find the shortest paths from ...

1. a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class).  Please show your work, and draw t

Remainder when 7^103 is divided by 24 , Find the remainder when 7^103 is di...

Find the remainder when 7^103 is divided by 24 Solution) we know by the concept of mod that.....   49 is congruent to 1 mod 24(means if 1 is subtracted fom 49 u get 48 which is

Area of the equilateral triangle, Area of the equilateral triangle: ...

Area of the equilateral triangle: Given : D, E, F are the mind points of BC, CA, AB. R.T.P. : We have to determine the ratio of the area of of triangle DEF and triangle AB

Mount everest is 29, Mount Everest is 29,028 ft high. Mount Kilimanjaro is ...

Mount Everest is 29,028 ft high. Mount Kilimanjaro is 19,340 ft high. How much taller is Mount Everest? Subtract Mt. Kilimanjaro's height from Mt. Everest's height; 29,028 - 19

Draw tangent graph y = tan ( x ), Graph y = tan ( x ). Solution In...

Graph y = tan ( x ). Solution In the case of tangent we need to be careful while plugging x's in since tangent doesn't present wherever cosine is zero (remember that tan x

Differentiation formulas, Differentiation Formulas : We will begin this s...

Differentiation Formulas : We will begin this section with some basic properties and formulas.  We will give the properties & formulas in this section in both "prime" notation &

Additional rule- rules of probability, Additional Rule- Rules of Probabilit...

Additional Rule- Rules of Probability Additional rule is used to calculate the probability of two or more mutually exclusive events. In such circumstances the probability of t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd