Find out the absolute extrema for function and interval, Mathematics

Assignment Help:

Find out the absolute extrema for the given function and interval.

 g (t ) = 2t 3 + 3t 2 -12t + 4 on [-4, 2]

Solution : All we actually need to do here is follow the process given above.  Thus, first notice that it is a polynomial and hence in continuous everywhere and in specific is then continuous on the given interval.

Now, we have to get the derivative so that we can determine the critical points of the function.

                      g ′ (t ) = 6t 2 + 6t -12 = 6 (t + 2) (t -1)

It looks like we'll contain two critical points, t = -2 and t = 1.  Note as well that we in fact desire something more than just the critical points. We just desire the critical points of the function which lie in the interval in question.  Both of these do fall within the interval as so we will employ both of them. That might seem like a silly thing to indicate at this point, however it is frequently forgotten, usually while it becomes important, and thus we will indicate it at every opportunity to ensure it's not forgotten.

Now we evaluate the function at the critical points & the end points of the interval.

g ( -2) = 24                                         g (1) = -3

g ( -4) = -28                                        g ( 2) = 8

Absolute extrema are the largest & smallest the function will ever be & these four points show the only places within the interval where the absolute extrema can take s place.  Thus, from this list we illustrates that the absolute maximum of g(t) is 24 & it takes place at t = -2 (a critical point) and the absolute minimum of g(t) is -28 that occurs at t = -4 (an endpoint).

In this instance we saw that absolute extrema can and will take place at both endpoints & critical points.


Related Discussions:- Find out the absolute extrema for function and interval

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

George worked from 7:00 am to 3:30 pm how much he earn, George worked from ...

George worked from 7:00 A.M. to 3:30 P.M. with a 45-minute break. If George earns $10.50 per hour and does not obtain paid for his breaks, how much will he earn? (Round to the near

Example to understand division means, My nephew had been introduced to divi...

My nephew had been introduced to division by his teacher Ms. Santosh, in Class 3. He, and several of his friends who had been taught by her, appeared to be quite comfortable with t

Quan. literacyprofiency, 3.20 euros per kilogram, 1 kilogram =2.2 pounds an...

3.20 euros per kilogram, 1 kilogram =2.2 pounds and current exchange rate is $1=0.9 euros. what is the price per pound?

Abstract algebra, Let D(subscript12) = ({x,y : x^2 = e ; y^6 = e ; xy =(...

Let D(subscript12) = ({x,y : x^2 = e ; y^6 = e ; xy =(y^-1) x}) a) Which of the following subsets are subgroups of D(subscript12) ? Justify your answer. i) {x,y,xy,y^2,y^3,e}

Describe adding and subtracting fractions in details, Describe Adding and S...

Describe Adding and Subtracting Fractions in details? To add or subtract fractions, here are some steps: 1. Find the lowest common denominator (LCD) or any common denominato

Tutor, how can i apply as tutor

how can i apply as tutor

Sales Tax and Value added Tax, Dinesh bought an article for Rs. 374, which ...

Dinesh bought an article for Rs. 374, which included a discount of 15% on the marked price and a sales tax of 10% on the reduced price. Find the marked price of the article.

Find out the value of n element of a set, A set consists of (2n+1) elements...

A set consists of (2n+1) elements. If the number of subsets of this set which consist of at most n elements is 8192. Find out the value of n. Ans: The following set has (2n + 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd