Find out that the relation is an equivalent relation or not, Mathematics

Assignment Help:

Let m be a positive integer with m>1. Find out whether or not the subsequent relation is an equivalent relation.

R = {(a,b)|a ≡ b (mod m)}

Ans: Relation R is illustrated as ≡m (congruence modulo m) on the set of positive integers. Let us check if it is an equivalence relation.

Reflexivity: Let x ∈ Z+ be any integer, after that x ≡m x since both yields similar remainder when divided by m. So (x, x) ∈ R ∀ x ∈ Z.  ∴R is a reflexive relation. 

Symmetry: Let x and y be any two integers and (x, y) ∈ R. This depicts that x ≡m y and therefore y ≡m x. So, (y, x) ∈ R. ∴ R is a symmetric relation.

Transitivity: Let x, y and z be any three elements of Z like that (x, y) and (y, z) ∈ R. So, we have x ≡m y and y ≡m z.  It entails that (x-y) and (y-z) are divisible by m. Hence, (x - y) + (y - z) = (x - z) is as well divisible by m that is x ≡m z. 

∴ (x, y) and (y, z) ∈ R ⇒ (x, z) ∈ R. That is R is a transitive relation.  

Ans: Relation R is illustrated as ≡m (congruence modulo m) on the set of positive integers. Let us check if it is an equivalence relation.

Reflexivity: Let x ∈ Z+ be any integer, after that x ≡m x since both yields similar remainder when divided by m. So (x, x) ∈ R ∀ x ∈ Z.  ∴R is a reflexive relation. 

Symmetry: Let x and y be any two integers and (x, y) ∈ R. This depicts that x ≡m y and therefore y ≡m x. So, (y, x) ∈ R. ∴ R is a symmetric relation.

Transitivity: Let x, y and z be any three elements of Z like that (x, y) and (y, z) ∈ R. So, we have x ≡m y and y ≡m z.  It entails that (x-y) and (y-z) are divisible by m. Hence, (x - y) + (y - z) = (x - z) is as well divisible by m that is x ≡m z. 

∴ (x, y) and (y, z) ∈ R ⇒ (x, z) ∈ R that is R is a transitive relation.  

Hence R is an equivalence relation.


Related Discussions:- Find out that the relation is an equivalent relation or not

Theorem, Theorem, from Definition of Derivative  If f(x) is differenti...

Theorem, from Definition of Derivative  If f(x) is differentiable at x = a then f(x) is continuous at x =a. Proof : Since f(x) is differentiable at x = a we know, f'(a

Find the annual percentage yield, 1.   Find the APY for the bank described ...

1.   Find the APY for the bank described below- A bank offers an APR of 4% compounded monthly. 2.  Use the compound interest formula to compute the balance in the following a

Properties of exponential form, Properties 1.   The domain of the logar...

Properties 1.   The domain of the logarithm function is (0, ∞ ) .  In other terms, we can just plug positive numbers into a logarithm! We can't plug in zero or a negative numbe

Find and classify all the equilibrium solutions, Find and classify all the ...

Find and classify all the equilibrium solutions to the subsequent differential equation. y' = y 2 - y - 6 Solution First, get the equilibrium solutions. It is generally

Problem solver, a bathroom measure 250 cm by 175 cm calculate the side of t...

a bathroom measure 250 cm by 175 cm calculate the side of the largest square tile that can tile the floor

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

Compute the break-even quantities, The revenue and cost functions for produ...

The revenue and cost functions for producing and selling quantity x for a certain production facility are given below. R(x) = 16x - x 2 C(x) = 20 + 4x a)  Determine the p

Factoring quadratic polynomials, Primary, note that quadratic is another te...

Primary, note that quadratic is another term for second degree polynomial. Thus we know that the largest exponent into a quadratic polynomial will be a2. In these problems we will

Geometry homework, i just have one question i need help on for my geometry ...

i just have one question i need help on for my geometry homework

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd