Find out that sets of functions are linearly dependent, Mathematics

Assignment Help:

Find out if the following sets of functions are linearly dependent or independent.

 (a) f x ) = 9 cos ( 2x )    g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

(b) f (t ) = 2t 2                                g (t ) = t 4

Solution:

(a) f x ) = 9 cos ( 2x )     g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

We'll start via writing down (1) for these two functions.

c(9cos(2x)) + k(2cos2(x)) - 2sin2(x)) = 0

We need to find out if we can find non-zero constants c and k which will make this true for all x or if c = 0 and k = 0 are the only constants which will make this true for all x. it is frequently a fairly not easy process. The process can be simplified along with a good intuition for this type of thing, but that's tough to come by, particularly if you haven't done many of these types of problems.

Under this case the problem can be simplified through recalling

cos2(x) - sin2(x) = cos(2x)

Using this fact our equation turns into,

9c cos ( 2x ) + 2k cos ( 2 x ) = 0

(9c + 2k ) cos ( 2x ) = 0

With such simplification we can notice that this will be zero for any pair of constants c and k which satisfies.

9c + 2k = 0

In between the possible pairs on constants which we could use are the following pairs.

c= 1                 k= -(9/2)

c= 2/9              k = -1

c= -2                k = 9

c= -(7/6)                      k = 21/4

Well I'm sure you can notice there are literally thousands of possible pairs and they can be created as "simple" or as "complicated" as you need them to be.

Thus, we've managed to get a pair of non-zero constants which will make the equation true for all x and hence the two functions are linearly dependent.

(b) f (t ) = 2t 2                                g (t ) = t 4

As from the last part, we'll start through writing down (1) for these functions.

2ct2 + kt4 = 0

In this case there isn't any rapid and simple formula to write one of the functions in terms of another as we did in the first part. Therefore, we're just going to have to notice if we can find constants. We'll begin by noticing that if the original equation is true, so if we differentiate everything we find a new equation which must also be true. Conversely, we've got the subsequent system of two equations in two unknowns.

2ct 2 + kt 4  = 0

4ct + 4kt 3  = 0

 We can solve this system for c and k and notice what we find.  We'll start through solving the second equation for c.

c = -kt2

Then, plug this in the first equation.

2(-kt2)t2 + kt4 = 0

-kt4 = 0

So recall that we are after constants which will make it true for all t. The only manner that it will ever be zero for all t is if k = 0! Therefore, if k = 0 we should also have c = 0.

Thus, we've shown that the only way as,

2ct 2 + kt 4  = 0

It will be true for all t is to need that c = 0 and k = 0. The two functions thus, are linearly independent.

Since we saw in the previous illustrations determining whether two functions are linearly independent or dependent can be a fairly included process. It is where the Wronskian can assist.


Related Discussions:- Find out that sets of functions are linearly dependent

Solve the limit problem, Solve the Limit problem as stated  Limit x tends...

Solve the Limit problem as stated  Limit x tends to 0 [tanx/x]^1/x^2 is ? lim m tends to infinity [cos (x/m)] ^m is? I need the procedure of solving these sums..

Formulas of summation notation, Formulas Now there are a couple of nice...

Formulas Now there are a couple of nice formulas which we will get useful in a couple of sections. Consider that these formulas are only true if starting at i = 1. You can, obv

Technical Mathematic, Convert or Reduce Reduce 4,500 micrograms to grams

Convert or Reduce Reduce 4,500 micrograms to grams

Demerits and merit-the geometric mean , The geometric mean Merits ...

The geometric mean Merits i.  This makes use of all the values described except while x = 0 or negative ii.   This is the best measure for industrial increase rates

Derive expressions for the mean and variance, On each day t of n days, N cu...

On each day t of n days, N customers of a supermarket were sampled and the number Xt expressing dissatisfaction was recorded. The results suggested that there were good and bad day

The central limit theorem, The Central Limit Theorem  The theories was ...

The Central Limit Theorem  The theories was introduced by De Moivre and according to it; if we choose a large number of simple random samples, says from any population and find

Fractions, If i worked 7 1/3 hours and planted 11 trees how many hours did ...

If i worked 7 1/3 hours and planted 11 trees how many hours did it take to plant each tree?

Chp 8 Study, Center and Radius 1)(x+2)^2-(y-3)^2=4

Center and Radius 1)(x+2)^2-(y-3)^2=4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd