Find out that sets of functions are linearly dependent, Mathematics

Assignment Help:

Find out if the following sets of functions are linearly dependent or independent.

 (a) f x ) = 9 cos ( 2x )    g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

(b) f (t ) = 2t 2                                g (t ) = t 4

Solution:

(a) f x ) = 9 cos ( 2x )     g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

We'll start via writing down (1) for these two functions.

c(9cos(2x)) + k(2cos2(x)) - 2sin2(x)) = 0

We need to find out if we can find non-zero constants c and k which will make this true for all x or if c = 0 and k = 0 are the only constants which will make this true for all x. it is frequently a fairly not easy process. The process can be simplified along with a good intuition for this type of thing, but that's tough to come by, particularly if you haven't done many of these types of problems.

Under this case the problem can be simplified through recalling

cos2(x) - sin2(x) = cos(2x)

Using this fact our equation turns into,

9c cos ( 2x ) + 2k cos ( 2 x ) = 0

(9c + 2k ) cos ( 2x ) = 0

With such simplification we can notice that this will be zero for any pair of constants c and k which satisfies.

9c + 2k = 0

In between the possible pairs on constants which we could use are the following pairs.

c= 1                 k= -(9/2)

c= 2/9              k = -1

c= -2                k = 9

c= -(7/6)                      k = 21/4

Well I'm sure you can notice there are literally thousands of possible pairs and they can be created as "simple" or as "complicated" as you need them to be.

Thus, we've managed to get a pair of non-zero constants which will make the equation true for all x and hence the two functions are linearly dependent.

(b) f (t ) = 2t 2                                g (t ) = t 4

As from the last part, we'll start through writing down (1) for these functions.

2ct2 + kt4 = 0

In this case there isn't any rapid and simple formula to write one of the functions in terms of another as we did in the first part. Therefore, we're just going to have to notice if we can find constants. We'll begin by noticing that if the original equation is true, so if we differentiate everything we find a new equation which must also be true. Conversely, we've got the subsequent system of two equations in two unknowns.

2ct 2 + kt 4  = 0

4ct + 4kt 3  = 0

 We can solve this system for c and k and notice what we find.  We'll start through solving the second equation for c.

c = -kt2

Then, plug this in the first equation.

2(-kt2)t2 + kt4 = 0

-kt4 = 0

So recall that we are after constants which will make it true for all t. The only manner that it will ever be zero for all t is if k = 0! Therefore, if k = 0 we should also have c = 0.

Thus, we've shown that the only way as,

2ct 2 + kt 4  = 0

It will be true for all t is to need that c = 0 and k = 0. The two functions thus, are linearly independent.

Since we saw in the previous illustrations determining whether two functions are linearly independent or dependent can be a fairly included process. It is where the Wronskian can assist.


Related Discussions:- Find out that sets of functions are linearly dependent

Word problem, A jet flew at an average speed of 480mph from Point X to Poin...

A jet flew at an average speed of 480mph from Point X to Point Y. Because of head winds, the jet averaged only 440mph on the return trip, and the return trip took 25 minutes longer

Focal chord of the parabola, show that the circle described on any focal c...

show that the circle described on any focal chord of the parabola touches the directrix

What is unitary method, Explanation of  Unitary Method Unitary Method k...

Explanation of  Unitary Method Unitary Method keeps of following two steps:-      Step 1 involves find the value of one unit.      Step 2 involves find the value of requi

Example of negative number, Q. Example of negative number? If you take ...

Q. Example of negative number? If you take an elevator 8 stories  down , what would be the opposite of this? The opposite would be that you take the elevator 8 stories  up .

More volume problems, More Volume Problems : Under this section we are de...

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we

Solid Mensuration, The two sides of a triangle are 17cm and 28cm long, and ...

The two sides of a triangle are 17cm and 28cm long, and the length of the median drawn to the third side is equal to 19.5 cm. What is the distance from an endpoint of the median to

Calculus, application of radious of curvatur

application of radious of curvatur

Obtain the number of significant modes, On the Assessment page for the modu...

On the Assessment page for the module Moodle site you will find five frequency response functions for the frequency range 20 to 100 Hz in the EXCEL spreadsheet "FRF_Data". These a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd