Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Find out some solutions to
y′′ - 9 y = 0
Solution
We can find some solutions here simply through inspection. We require functions whose second derivative is 9 times the original function. One of the first functions which I can think of that comes back to it after two derivatives is an exponential function and along with proper exponents the 9 will find taken care of as well.
Therefore, it looks like the subsequent two functions are solutions.
y(t) = e3t and y(t) = e-3t
We'll leave this to you to verify that these are actually solutions.
These two functions are not the merely solutions to the differential equation though. Any of the subsequent is also solutions to the differential equation.
y (t ) = -9e3t
y (t ) = 56e-3t
y (t ) = 7e3t - 6e-3t
y (t ) = 123e3t
y (t ) = (14/9) e-3t
y (t )= -92e3t -16e-3t
Actually, if you think about it any function which is in the form
y (t ) = c e3t + c e-3t will be a solution to the differential equation.
This illustration leads us to a very significant fact that we will use in practically each problem in this section will be a solution to the differential equation.
1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles
Applications of Integrals In this part we're going to come across at some of the applications of integration. It should be noted also that these kinds of applications are illu
Probability Distribution for Continuous Random Variables In a continuous distribution, the variable can take any value within a specified range, e.g. 2.21 or 1.64 compared to
what is the business application of matrices
how to solve for x
find the angel between the vectors 4i-2j+k and 2i-4j online answer
in a triangle angle a is 70 and angle b is 50 what is angle c.
Proof of: if f(x) > g(x) for a x b then a ∫ b f(x) dx > g(x). Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Prop
Given, y = f(x) = 2 x 3 - 3x 2 + 4x +5 a) Use the Power function to find derivative of the function. b) Find the value of the derivative at x = 4.
Given that f(x,y) = 3xy - x 2 y - xy 2 . Find all the points on the surface z = f(x, y)where local maxima, local minima, or saddles occur
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd