Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Arithmetic progression., 1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d ar...

1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d are in A.P 2.The nth term of an A.P is an+b.Find the sum of the series upto n terms.

Decision trees and bayes theory, Decision Trees And Bayes Theory This m...

Decision Trees And Bayes Theory This makes an application of Bayes' Theorem to resolve typical decision problems. It is examined a lot so it is significant to clearly understan

Geometry, which kind of triangle has no congruent sides ?

which kind of triangle has no congruent sides ?

Gauss-siedel or newton-rapson method, A one-line diagram of a simple three-...

A one-line diagram of a simple three-bus power system is shown in Figure 1 with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per unit. The scheduled l

Fractions, what is greater than three forths

what is greater than three forths

Compound interest, you have RM5O,OOO to invest,and two fund that you''d li...

you have RM5O,OOO to invest,and two fund that you''d like to invest in.The You-Risk-It Fund yields 14% interest.The Extra-Dull Fund yields 6% interest.Besause of college financial-

Transpotation, how can you determine trasportation schedule that minimizes ...

how can you determine trasportation schedule that minimizes cost

Error analysis: describle and correct the error in plotting, to plot (5,-4)...

to plot (5,-4), start at (0,0) and move 5 units left and 4 units down

Geometry, Given: ??????? is supp. to ??????? ???? ????? bisects ??????? ?...

Given: ??????? is supp. to ??????? ???? ????? bisects ??????? ???? ????? bisects ??????? Prove: ??????? is a rt. ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd