Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Las leyes de kepler, la expresión que permite calcular el radio medio de la...

la expresión que permite calcular el radio medio de la órbita de cada planeta es?

Find the value of p and q for which the system of equations, Find the value...

Find the value of p and q for which the system of equations represent coincident lines 2x +3y = 7, (p+q+1)x +(p+2q+2)y = 4(p+q)+1 Ans: a 1  = 2, b 1 = 3, c 1 = 7 a 2  =

Index shift - sequences and series, Index Shift - Sequences and Series ...

Index Shift - Sequences and Series The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons

Create graph showing the depth of the water , Your friends have opened an o...

Your friends have opened an ocean fishing operation that requires their fishing vessel to cross a channel, where the depth of the water (measured in metres) varies with time, and i

Determine the fraction of the time, Ipswich has two ambulances. Ambulance 1...

Ipswich has two ambulances. Ambulance 1 is based at the local college and ambulance 2 is based downtown. If a request for an ambulance comes from the local college, the college-bas

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Cirlce Division, How can i calculate arc length for dividing a circle into ...

How can i calculate arc length for dividing a circle into 10 parts

Linear equation, develop any two linear equation which are reducible into l...

develop any two linear equation which are reducible into linear form from our daily life by cross multiplication

Describe the types of triangles, Describe the Types of triangles ? Tria...

Describe the Types of triangles ? Triangles can be classified according to the lengths of the sides or the measures of the angles. 1. Naming triangles by sides An

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd