Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Give the definition of logarithms, Give the Definition of Logarithms ? ...

Give the Definition of Logarithms ? A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = ay, then log a x = y.

Simplex table, maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

Order to solve mathematical operations, Order to solve Mathematical Operati...

Order to solve Mathematical Operations: Example: Solve the following equation: (4 - 2) + (3 x 4) - (10 ÷ 5) - 6 =  ____________ Solution: a.         Perform ma

What is converse- inverse and contrapositive, What is Converse, Inverse, an...

What is Converse, Inverse, and Contrapositive In geometry, many declarations are written in conditional form "If ...., then....." For Example: "If two angles are right angles,

Parametric curve - parametric equations & polar coordinates, Parametric Cur...

Parametric Curve - Parametric Equations & Polar Coordinates Here now, let us take a look at just how we could probably get two tangents lines at a point.  This was surely not

Application of linear equations, Application of Linear Equations We ar...

Application of Linear Equations We are going to talk about applications to linear equations.  Or, put in other terms, now we will start looking at story problems or word probl

How many pages are not advertisements, The first section of a newspaper has...

The first section of a newspaper has 16 pages. Advertisements take up (3)3/8 of the pages. How many pages are not advertisements? Subtract the number of pages of advertisements

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd