Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Derive a linear system - gauss jordan elimination, Suppose that, on a certa...

Suppose that, on a certain day, 495 passengers want to fly from Honolulu (HNL) to New York (JFK); 605 passengers want to fly from HNL to Los Angeles (LAX); and 1100 passengers want

COS Sheets, How do I find percentages with doing COS Sheets

How do I find percentages with doing COS Sheets

Engg maths, How to get assignment to solve and earn money

How to get assignment to solve and earn money

Quadratic equation modeling profitability, Sam''s sport''s equipment sells ...

Sam''s sport''s equipment sells footballs. They maximized their profitability last year at (6,4) where x represents employees and P(x) represents profitability. Sam noticed that wh

How to multiplying monomials, How to Multiplying Monomials? To multiply...

How to Multiplying Monomials? To multiply monomials: Step 1: Multiply the coefficients. Step 2: Multiply the like variables by adding their exponents. Step 3: Multiply ans

Interest, kolushushi borrowed tsh 250000/- and paid135000/- as interest in ...

kolushushi borrowed tsh 250000/- and paid135000/- as interest in 3 years. what rate of interest was paid

Find the derivations of functions, Find the derivatives of each of the foll...

Find the derivatives of each of the following functions, and their points of maximization or minimization if possible. a.  TC = 1500 - 100 Q + 2Q 2 b.  ATC = 1500/Q - 100 +

Solve simultaneous equations by graphical method, Solve the following pairs...

Solve the following pairs of simultaneous equations by elimination method i.2x+y=10 ii. 3x+y=6 3x-2y=1 5x+y=8 solve the following simult

Exponential functions, Exponential Functions : We'll begin by looking at t...

Exponential Functions : We'll begin by looking at the exponential function,                                                              f ( x ) = a x We desire to differe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd