Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Find out the area of the circle, 1. The number of accidents attended to by ...

1. The number of accidents attended to by 6 emergency ambulance stations during a 5 month period was: Station May June July Aug Sep      A        21     20     22    37    37

Sum, what is an equation for circle?..

what is an equation for circle?..

Trig, without using a calculator how would you know is cos theta(20) is gre...

without using a calculator how would you know is cos theta(20) is greater than cos theta (35)

Marketing research, Discuss the role research would play during your decisi...

Discuss the role research would play during your decision making

Probability, If a school has lockers with 50 numbers on each co...

If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Solve the following word problems, 1.   The length of a rectangle is 2 time...

1.   The length of a rectangle is 2 times its width.  The area of the rectangle is 72          square inches. Find the dimensions of the rectangle.   2.   The length of a rec

Which team should get the ball at the beginning, Why is tossing a coin cons...

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match? Ans: equally likely because they are mutual

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd