Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Magnitude, find the magnitude of the following vectors:5i+7j

find the magnitude of the following vectors:5i+7j

Circumcircle problem, find the radius of circumcircle of an equilateral tri...

find the radius of circumcircle of an equilateral triangle of 6root3 one side.

Determine the actual viewing area, Computer monitors are calculated by thei...

Computer monitors are calculated by their diagonals. If a monitor is advertised to be 19 in, Determine the actual viewing area, considerthe screen is square? (Round to the nearest

Important formulas of functions , Important formulas d (a b )/ dx  = 0...

Important formulas d (a b )/ dx  = 0                              This is a constant d ( x n ) / dx = nx n -1                      Power Rule d (a x ) / dx = a x l

Trignometry, i have to get 10 points in 10th class

i have to get 10 points in 10th class

Write a procedure to obtain the inverse of a matrix, Write a procedure to o...

Write a procedure to obtain the inverse of an n by n matrix usingGaussian elimination. (You cannot use A - 1 or any of the built-in packages like 'MatrixInverse'.) Output any a

Help with 7th grade home work, I need help finding a answer of my kids home...

I need help finding a answer of my kids homework because I have no clue.. can you please help me

Solving equations by completing the square method, I need help for Solving ...

I need help for Solving Equations by Completing the Square Method, can anybody help me out for this?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd