Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Determine the average bit rate - huffman codebook, 1. Consider a source wi...

1. Consider a source with 4 symbols {a,b,c,d}. The probability of the 4 symbols are P(a)=0.4, p(b) = 0.1, p(c)=0.2, p(d)= 0.3. a. Design a Huffman codebook for these symbols.

Math, how do you add all the Y.AND X UP WITH 3

how do you add all the Y.AND X UP WITH 3

Monotonic, Monotonic, Upper bound and lower bound Given any sequence {a...

Monotonic, Upper bound and lower bound Given any sequence {a n } we have the following terminology: 1.   We call or denote the sequence increasing if a n n+1 for every n.

Compare and contrast african immigrants, Compare and contrast African immig...

Compare and contrast African immigrants with our immigrant groups? How are they different? What are the implications of these differences for their adjustment to the larger society

Correlation and regression, Correlation and Regression CORRELATION is ...

Correlation and Regression CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of studying correla

Rectilinear figures, what are rctilinear figures ? types of rectilinear fig...

what are rctilinear figures ? types of rectilinear figures and their propertiees.

Convergence, Assume that (xn) is a sequence of real numbers and that a, b €...

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0. (a) If (x n ) converges to x, show that (|ax n + b|) converges to |ax + b|. (b) Give

Mr F.D, how you divide 100 by 10 and then x by 10

how you divide 100 by 10 and then x by 10

Ryan gym membership costs him how much is every installment, Ryan's gym mem...

Ryan's gym membership costs him $390 per year. He pays this within twelve equal installments a year. How much is every installment? To ?nd out each installment, the total yearl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd