Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Real and distinct roots, Now we start solving constant linear, coefficient ...

Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon

Arithmetic/Geometric Sequences and Binomial Expansion, Find the 35th term o...

Find the 35th term of the sequence in which a1 = -10 and the common difference is 4.

Metric space, Assume that (X, d) is a metric space and let (x1, : : : , x n...

Assume that (X, d) is a metric space and let (x1, : : : , x n ) be a nite set of pointsof X. Elustrate , using only the de nition of open, that the set X\(x1, : : : , x n ) obtain

Maths Assessment, Assessment task This Term Assessment will require you ass...

Assessment task This Term Assessment will require you assess the effectiveness of your current lunch budget and prepare a proposal to your caregiver to seek permission to be given

Find the polynomial zeros , If two zeros of the polynomial f(x) = x 4 - 6x...

If two zeros of the polynomial f(x) = x 4 - 6x 3 - 26x 2 + 138x - 35 are 2 ± √3.Find the other zeros.     (Ans:7, -5) Ans : Let the two zeros are 2 +√3 and 2 - √3 Sum of

Estimate the probability, The following (artificial) data record the length...

The following (artificial) data record the length of stay (in days) spent on a psychiatric ward for 28 consecutive patients who have been sectioned under the mental health act, cla

What is the maximum volume of rectangular box, 1. A rectangular piece of ca...

1. A rectangular piece of cardboard measuring 26 inches by 42 inches is to be made into a box with an open top by cutting equal size squares from each comer and folding up the side

Calculate the radius of the circle, In the figure, ABCD is a square inside ...

In the figure, ABCD is a square inside a circle with centre O. The Centre of the square coincides with O & the diagonal AC is horizontal of AP, DQ are vertical & AP = 45 cm, DQ = 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd