Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

LINEAR EQUATIONS, SOLVE THE inequation 0>-5 -X AND X Belongs TO R .Represen...

SOLVE THE inequation 0>-5 -X AND X Belongs TO R .Represent THE SOLUTION SET ON THE NUMBER LINE

Differential calculus finding limits, how can i evaluate this lim of x as x...

how can i evaluate this lim of x as x approaches to a

Explain how to distribute simplifying expressions, Explain How to Distribut...

Explain How to Distribute simplifying expressions? The distributive law states that for all numbers a, b, and c, a(b + c)= ab + ac What does this mean in plain language?

Home work, can you hepl me with my home i dont understand it!!!

can you hepl me with my home i dont understand it!!!

Evaluate the mean of temperatures, Evaluate the mean of temperatures: ...

Evaluate the mean of temperatures: Example: Given the subsequent temperature readings, 573, 573, 574, 574, 574, 574, 575, 575, 575, 575, 575, 576, 576, 576, 578 So

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

Mod(z-25i)<15, Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumfer...

Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumference of the circle with (0,25) at its centre and radius less then 15. so difference in the max and min value of arg Z is

What was the total cost of the copies, Mary made 34 copies at the local off...

Mary made 34 copies at the local office supply store. The copies cost $0.06 each. What was the total cost of the copies? Multiply 34 by $0.06 to ?nd out the total cost; 34 × $0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd