Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Show frequency tables, Q. Show Frequency Tables? Ans. A frequency ...

Q. Show Frequency Tables? Ans. A frequency table is used to show how often a piece of data occurs. Example: Michelle decides to keep track of the number of phone call

Fact - undetermined coefficients, Here, let's take a look at sums of the fu...

Here, let's take a look at sums of the fundamental components and/or products of the fundamental components. To do this we'll require the following fact. Fact- Undetermined Co

Finding the LCM, what is the LCM of 18, 56 and 104 show working

what is the LCM of 18, 56 and 104 show working

Functions of several variables - three dimensional space, Functions of Seve...

Functions of Several Variables - Three Dimensional Space In this part we want to go over a few of the basic ideas about functions of much more than one variable. Very first

Saxon math, what is the are of a square that is 2 inches long and 2 inches...

what is the are of a square that is 2 inches long and 2 inches wide?

Eqt.., pam bought a new bedroom suit for $2588.she me a down payment of $18...

pam bought a new bedroom suit for $2588.she me a down payment of $188 and paid the remaining amount in 24 equal monthly payments .how much did she pay for each monthly payment.

Calculate the profit, Lucas purchased his motorcycle for $5,875.98 and sold...

Lucas purchased his motorcycle for $5,875.98 and sold it for $7,777.77. What was his profit? To ?nd out the pro?t, you must subtract what Lucas paid for the motorcycle from the

Solve the following word problems, 1.   The length of a rectangle is 2 time...

1.   The length of a rectangle is 2 times its width.  The area of the rectangle is 72          square inches. Find the dimensions of the rectangle.   2.   The length of a rec

Example to compute limit, calculates the value of the following limit. ...

calculates the value of the following limit. Solution Now, notice that if we plug in θ =0 which we will get division by zero & so the function doesn't present at this

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd