Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Find out the general formula for the tangent vector and unit tangent vector to the curve specified by
r→ (t) = t2 i→ + 2 sin t j→ + 2 cos t k→.
Solution
First, by common formula we mean that we won't be plugging in a particular t and thus we will be finding out a formula that we can utilize at a later date if we would like to find the tangent at any point on the curve. Along with that said there really isn't all that much to do at this point other than to do the work.
Here below is the tangent vector to the curve.
r→′ (t) = 2t i→ + 2 cos t j→ - 2 sin t k→
To obtain the unit tangent vector we require the length of the tangent vector.
|| →r′ (t)|| = √ (4t2 + 4cos2 t + 4 sin2 t)
= √ (4t2 + 4)
After that the unit tangent vector is,
MAKING CONNECTIONS : you have read about what the ability to think mathematically involves. In this section we shall discuss ways of developing this ability in children. As yo
which of these is between 5,945,089 and 5,956,108
1) find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2)compute the work done by the force field F(x,y,z) = x^2I + y j +y k in moving
Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have y= log b x is equivalent to x= b y The first one is called
Related problems,working rule,defnitions
How to Find the range of a function ? Sigh. Students ask me this all the time. They don't want an explanation, they want a procedure. "Tell me the steps!" Unfortunately, th
1. Consider the relation on A = {1, 2, 3, 4} with relation matrix: Assume that the rows and columns of the matrix refer to the elements of A in the order 1, 2, 3, 4. (a)
use the expansion of (1-x)^7 to find the value of 1.998^7 correct to five significant figures
Importance of positioning
This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd