Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Find out the general formula for the tangent vector and unit tangent vector to the curve specified by
r→ (t) = t2 i→ + 2 sin t j→ + 2 cos t k→.
Solution
First, by common formula we mean that we won't be plugging in a particular t and thus we will be finding out a formula that we can utilize at a later date if we would like to find the tangent at any point on the curve. Along with that said there really isn't all that much to do at this point other than to do the work.
Here below is the tangent vector to the curve.
r→′ (t) = 2t i→ + 2 cos t j→ - 2 sin t k→
To obtain the unit tangent vector we require the length of the tangent vector.
|| →r′ (t)|| = √ (4t2 + 4cos2 t + 4 sin2 t)
= √ (4t2 + 4)
After that the unit tangent vector is,
Please help
I need help with my calculus work
maria has a slice of pizza that is 1/6 of the pizaa.Ben has a slice of pizza that is 1/3 of the pizza, marias slice is bigger.draw pizzas to show how this is possible.
Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for
What are directional derivatives? Explain with two or more examples..
One-to-one function: A function is called one-to-one if not any two values of x produce the same y. Mathematically specking, this is the same as saying, f ( x 1 ) ≠ f ( x 2
CONCEPT OF NUMBER LINE
how to find the indicated term?
Forecasting By Using Least Squares Data have been kept of sales over the last seven years Year 1 2 3 4 5 6
how to simplify an expression which has different signs
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd