Find out equation is a function, Mathematics

Assignment Help:

Example: Find out which of the following equations functions are & which are not functions.

                           y= 5x + 1

Solution

The "working" definition of function is saying is that if we take all of possible values of x & plug them in the equation & solve for y we will get accurately one value for each value of x.  At this stage it can be pretty hard to actually illustrate that an equation is a function thus we'll mostly talk our way through it. Conversely it's frequently quite easy to show that an equation isn't a function.

So, we need to illustrate that no matter what x we plug in the equation & solve for y we will only obtain a single value of y.  Note as well that the value of y will probably be different for each value of x, although it doesn't have to be.

Let's begin by plugging in some of the values of x and see what happens.

x= -4 : y= 5 ( -4) + 1 = -20 + 1 = -19

x= 0: y= 5 (0)+ 1 = 0 + 1 = 1

x= 10 : y= 5 (10) + 1 = 50 + 1= 51

Thus, for each value of x we obtained a single value of y out of the equation.  Now, it isn't enough to claim that this is a function.  To officially prove that it is a function we have to illustrates that this will work no matter that value of x we plug into the equation.

Certainly we can't plug all possible value of x in the equation. That just isn't possible physically.  For each x, on plugging in, first we multiplied the x by 5 and after that added 1 onto it.  Now, if we multiply any number by 5 we will obtain a single value from the multiplication.  Similarly, we will only get a single value if we add 1 onto a number. So, it seems plausible that depend on the operations involved with plugging x into the equation that we will just get a single value of y out of the equation.

Hence, this equation is a function.


Related Discussions:- Find out equation is a function

Draw the direction field, Draw the direction field for the subsequent diffe...

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.   Solution:  y′ = y - x  To draw direct

prove area of rhombus on hypotenuse right-angled triangle, Prove that the ...

Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60o, is equal to the sum of the areas of rhombuses with one of their angles

Estimation of difference among two means-illustration, A comparison of the ...

A comparison of the wearing out quality of two types of tyres was obtained by road testing. Samples of 100 tyres were collected. The miles traveled until wear out were recorded and

Determine the team having similar code-pigeon hole principle, Shirts number...

Shirts numbered consecutively from 1 to 20 are worn by 20 members of a bowling league. While any three of these members are selected to be a team, the league aims to use the sum of

Sequence and series, Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+.....

Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+...+15+17)=

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Example for introducing counting, Four-year-old Mariamma was reciting numbe...

Four-year-old Mariamma was reciting number names - some of them in order, and others randomly. The child's aunt, sitting nearby, asked her, "Can you write 'two'?" She said she coul

Definition of higher order derivatives, Higher Order Derivatives : Le...

Higher Order Derivatives : Let's begin this section with the given function.                            f ( x ) = 5x 3 - 3x 2 + 10 x - 5 By this point we have to be a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd