Find out deflection under the load, Mechanical Engineering

Assignment Help:

Find out Deflection under the load:

A beam of span 4 m is subject to a point load of 20 kN at 1 m from the left support and a Udl of 10 kN/m over a length of 2 m from the right support.

Find out :

1. Slope at the ends.

2. Slope at the centre.

3. Deflection under the load.

4. Deflection at the centre.

5. Maximum deflection.

Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA + RB  = 20 + 10 × 2 = 40 kN         --------- (1)

275_Find out Deflection under the load.png

Figure

Taking moments around A,

RB  × 4 = 20 × 1 + 10 × 2 × 3 = 80

RB  = 20 kN                                                      -------- (2)

RA  = 20 kN

M = 20 x - 20 [ x - 1] - 10 [ x - 2] ([ x - 2]/2)

= 20 x - 20 [ x - 1] - 5 [ x - 2]2

EI (d 2 y/ dx2) = M

= 20 x - 20 [ x - 1] - 5 [ x - 2]2       ---------- (4)

 EI (dy / dx )= 10 x2 /3 - (10/3) [ x - 1]2  - (5/3) [ x - 2]3  + C1        ------ (5)

EIy = 10 x3 /3- (10/3) [ x - 1]3  - ( 5/12) [ x - 2]4  + C 1 x + C2  ---------6

at A, x = 0,      y = 0,        C2  = 0

at B, x = 4 m,      y = 0

0 =(10 × 43 )/3- 10 (4 - 1)3 - (5/12)  (4 - 2)4  + C 1 × 4

C1 =- 29.17

EI dy/ dx = 10 x2  - 10 [ x - 1]2  - (5 /3 )[ x - 2]3  - 29.17

 (a)       Slope at A, (x = 0),

θ A = - 29.17 / EI = - 29.17 × 10/(20 × 106)

 = - 1.46 × 10- 3  radians

(b)        Slope at B, (x = 4 m),

EI θB  = 10 × 42  - 10 (4 - 1)2  - 5 (4 - 2)3  - 29.17 = + 27.5

θB = + 1.38 × 10- 3  radians

 (c)       Slope at centre, (x = 2 m),

EI θC  = 10 × 22  - 10 (2 - 1)2  - 29.17

θC  = + 0.04 × 10- 3  radians

Deflection under the load :

EIy = 10 x3 /3- 10 [ x - 1]3  - (5/12)  [ x - 2]4  - 29.17 x

At x = 1 m,

EIy D = (10/3) - 29.17

EIyD  = - 25.84 × 103 × 103/20 × 106

= - 1.29 mm

 (d)      Deflection at the centre :

           x = 2 m

EIy =10 × 23 - (10/3) (2 - 1)3 - 29.17 × 2

yC  = - 1.75 mm

 (e)       Maximum deflection : Let the maximum deflection b/w D and C (x < 2 m).

dy/ dx = 0

10 x2  - 10 ( x - 1)2  - 29.17 = 0

10 x2  - 10 x2  - 10 + 20 x - 29.17 = 0

x = 1.96 m < 2 m

EIy max = (10/3) (1.96)3  - 10 (1.96)3  - 29.17 × 1.96 = - 35

∴ ymax  = - 1.7501 mm


Related Discussions:- Find out deflection under the load

Evaluate the motion - smooth pulley, Evaluate the motion - Smooth pulley: ...

Evaluate the motion - Smooth pulley: Block B is accelerated along the horizontal plane via mass A attached to it by a flexible inextensible massless rope passing over a smooth

What is vertical spoilers, Q. What is Vertical Spoilers? Vertical Spoil...

Q. What is Vertical Spoilers? Vertical Spoilers - Use a three-start system of short vertical spoilers arranged in a helical pattern on the top third of the vessel. The exposed

Rigid body and momentum, Rigid body and Momentum: Body : A body consi...

Rigid body and Momentum: Body : A body consists of a Number of particles, it has definite shape. Rigid body :   A rigid body can be defined as the combination of a large

Crystal structure , Explain with neat sketches the various types of crystal...

Explain with neat sketches the various types of crystal imperfections

Auto - associative network, We seek to test if an auto-associative network ...

We seek to test if an auto-associative network is capable of recalling certain memories. Here you will test if patterns can be completed or recovered. You are given a single patter

The leader command-autocad, The Leader Command The Leader command can b...

The Leader Command The Leader command can be used to annotate at any point on a drawing. The command sequence below was used to draw the leader shown in the Figure Below.

Engineering Mechanics, How do we calculate BMD for the all type of beams?

How do we calculate BMD for the all type of beams?

Renewable Energy, I am attending Thermodynamics class at the university. Th...

I am attending Thermodynamics class at the university. The professor asked me to write a research on Renewable Energy: Solar Power. The report should be of 10 pages and at least 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd