Find out deflection under the load, Mechanical Engineering

Assignment Help:

Find out Deflection under the load:

A beam of span 4 m is subject to a point load of 20 kN at 1 m from the left support and a Udl of 10 kN/m over a length of 2 m from the right support.

Find out :

1. Slope at the ends.

2. Slope at the centre.

3. Deflection under the load.

4. Deflection at the centre.

5. Maximum deflection.

Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA + RB  = 20 + 10 × 2 = 40 kN         --------- (1)

275_Find out Deflection under the load.png

Figure

Taking moments around A,

RB  × 4 = 20 × 1 + 10 × 2 × 3 = 80

RB  = 20 kN                                                      -------- (2)

RA  = 20 kN

M = 20 x - 20 [ x - 1] - 10 [ x - 2] ([ x - 2]/2)

= 20 x - 20 [ x - 1] - 5 [ x - 2]2

EI (d 2 y/ dx2) = M

= 20 x - 20 [ x - 1] - 5 [ x - 2]2       ---------- (4)

 EI (dy / dx )= 10 x2 /3 - (10/3) [ x - 1]2  - (5/3) [ x - 2]3  + C1        ------ (5)

EIy = 10 x3 /3- (10/3) [ x - 1]3  - ( 5/12) [ x - 2]4  + C 1 x + C2  ---------6

at A, x = 0,      y = 0,        C2  = 0

at B, x = 4 m,      y = 0

0 =(10 × 43 )/3- 10 (4 - 1)3 - (5/12)  (4 - 2)4  + C 1 × 4

C1 =- 29.17

EI dy/ dx = 10 x2  - 10 [ x - 1]2  - (5 /3 )[ x - 2]3  - 29.17

 (a)       Slope at A, (x = 0),

θ A = - 29.17 / EI = - 29.17 × 10/(20 × 106)

 = - 1.46 × 10- 3  radians

(b)        Slope at B, (x = 4 m),

EI θB  = 10 × 42  - 10 (4 - 1)2  - 5 (4 - 2)3  - 29.17 = + 27.5

θB = + 1.38 × 10- 3  radians

 (c)       Slope at centre, (x = 2 m),

EI θC  = 10 × 22  - 10 (2 - 1)2  - 29.17

θC  = + 0.04 × 10- 3  radians

Deflection under the load :

EIy = 10 x3 /3- 10 [ x - 1]3  - (5/12)  [ x - 2]4  - 29.17 x

At x = 1 m,

EIy D = (10/3) - 29.17

EIyD  = - 25.84 × 103 × 103/20 × 106

= - 1.29 mm

 (d)      Deflection at the centre :

           x = 2 m

EIy =10 × 23 - (10/3) (2 - 1)3 - 29.17 × 2

yC  = - 1.75 mm

 (e)       Maximum deflection : Let the maximum deflection b/w D and C (x < 2 m).

dy/ dx = 0

10 x2  - 10 ( x - 1)2  - 29.17 = 0

10 x2  - 10 x2  - 10 + 20 x - 29.17 = 0

x = 1.96 m < 2 m

EIy max = (10/3) (1.96)3  - 10 (1.96)3  - 29.17 × 1.96 = - 35

∴ ymax  = - 1.7501 mm


Related Discussions:- Find out deflection under the load

Difference between, Difference between path function and point function

Difference between path function and point function

Illustrate about the term bearing capacity, Illustrate about the term beari...

Illustrate about the term bearing capacity? The bearing capacity of a soil mass frequently termed as the ability of the soil to carry the loads without any failure. The foun

Calculate stress intensity factor, Calculate stress intensity factor: ...

Calculate stress intensity factor: For the plate in Figure (a) W = 25 mm, 2a = 10 mm, plate thickness, t = 2 mm, Load P = 1000 N. Calculate stress intensity factor if length o

Explain the laws of thermodynamics, Explain the Laws of Thermodynamics ...

Explain the Laws of Thermodynamics Usually thermodynamics contains four laws; a. Zeroth law:  this law deals with thermal equilibrium and establishes an idea of temperature.

Hazardous and safe areas in plant layout, Q. Hazardous and Safe Areas in pl...

Q. Hazardous and Safe Areas in plant layout? Plants implicitly involve identifiable hazards in respect to the environment, location and presence of potentially explosive materi

Stresses., temparature stresses in composite bars

temparature stresses in composite bars

Lami theorem - mechanics, Explain lami's theorem: Sol.: Lami's theore...

Explain lami's theorem: Sol.: Lami's theorem states that "If the three coplanar forces which are acting at a point be in equilibrium, then every force is proportional to sin

Determine the speed of shaft, An internal wheel B with 80 teeth is keyed to...

An internal wheel B with 80 teeth is keyed to shaft F. A fixed internal wheel with 82 teeth is concentric with B. A compound wheel DE gear with two internal wheels, D has 28 teeth

What are rectangular combined footings, What are rectangular combined footi...

What are rectangular combined footings? Rectangular Combined Footings: In the design of rectangular combined footings it is assumed that the footing is rigid. Soil pressure

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd