Find out deflection under the load, Mechanical Engineering

Assignment Help:

Find out Deflection under the load:

A beam of span 4 m is subject to a point load of 20 kN at 1 m from the left support and a Udl of 10 kN/m over a length of 2 m from the right support.

Find out :

1. Slope at the ends.

2. Slope at the centre.

3. Deflection under the load.

4. Deflection at the centre.

5. Maximum deflection.

Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA + RB  = 20 + 10 × 2 = 40 kN         --------- (1)

275_Find out Deflection under the load.png

Figure

Taking moments around A,

RB  × 4 = 20 × 1 + 10 × 2 × 3 = 80

RB  = 20 kN                                                      -------- (2)

RA  = 20 kN

M = 20 x - 20 [ x - 1] - 10 [ x - 2] ([ x - 2]/2)

= 20 x - 20 [ x - 1] - 5 [ x - 2]2

EI (d 2 y/ dx2) = M

= 20 x - 20 [ x - 1] - 5 [ x - 2]2       ---------- (4)

 EI (dy / dx )= 10 x2 /3 - (10/3) [ x - 1]2  - (5/3) [ x - 2]3  + C1        ------ (5)

EIy = 10 x3 /3- (10/3) [ x - 1]3  - ( 5/12) [ x - 2]4  + C 1 x + C2  ---------6

at A, x = 0,      y = 0,        C2  = 0

at B, x = 4 m,      y = 0

0 =(10 × 43 )/3- 10 (4 - 1)3 - (5/12)  (4 - 2)4  + C 1 × 4

C1 =- 29.17

EI dy/ dx = 10 x2  - 10 [ x - 1]2  - (5 /3 )[ x - 2]3  - 29.17

 (a)       Slope at A, (x = 0),

θ A = - 29.17 / EI = - 29.17 × 10/(20 × 106)

 = - 1.46 × 10- 3  radians

(b)        Slope at B, (x = 4 m),

EI θB  = 10 × 42  - 10 (4 - 1)2  - 5 (4 - 2)3  - 29.17 = + 27.5

θB = + 1.38 × 10- 3  radians

 (c)       Slope at centre, (x = 2 m),

EI θC  = 10 × 22  - 10 (2 - 1)2  - 29.17

θC  = + 0.04 × 10- 3  radians

Deflection under the load :

EIy = 10 x3 /3- 10 [ x - 1]3  - (5/12)  [ x - 2]4  - 29.17 x

At x = 1 m,

EIy D = (10/3) - 29.17

EIyD  = - 25.84 × 103 × 103/20 × 106

= - 1.29 mm

 (d)      Deflection at the centre :

           x = 2 m

EIy =10 × 23 - (10/3) (2 - 1)3 - 29.17 × 2

yC  = - 1.75 mm

 (e)       Maximum deflection : Let the maximum deflection b/w D and C (x < 2 m).

dy/ dx = 0

10 x2  - 10 ( x - 1)2  - 29.17 = 0

10 x2  - 10 x2  - 10 + 20 x - 29.17 = 0

x = 1.96 m < 2 m

EIy max = (10/3) (1.96)3  - 10 (1.96)3  - 29.17 × 1.96 = - 35

∴ ymax  = - 1.7501 mm


Related Discussions:- Find out deflection under the load

Can you explain pattern allowances, Q. Can you explain Pattern Allowances? ...

Q. Can you explain Pattern Allowances? The difference in the dimensions of the casting and the patterns is due to the various allowances considered while designing a pattern fo

Project help, need help to calculate how much a base must weigh to keep a o...

need help to calculate how much a base must weigh to keep a object on to stable when a force is applied from the side

At what speed must the chamber move , The National Aeronautics and Space Ad...

The National Aeronautics and Space Administration (NASA) studies the physiological effects of large accelerations on astronauts. Some of these studies use a machine known as a cent

Theory of mechanics , analyze a six bar linkage to get the position, veloci...

analyze a six bar linkage to get the position, velocity and acceleration

Force, System of force

System of force

Your job is to design the connecting rod, Introduction You are now worki...

Introduction You are now working as a FEA engineer for a Computer Aided Engineering (CAE) consultancy company called Dantech. This morning, your manager assigned you a new contr

Determine tangential and normal stresses, A rectangular block of material i...

A rectangular block of material is subjected to stresses 65N/mm 2 (tensile) in x- direction and 35 N/mm 2 (tensile) in perpendicular direction. It is accompanied by shear stress

Fluid friction, Fluid Friction: Fluid friction manifests when the lubr...

Fluid Friction: Fluid friction manifests when the lubricating fluid is introduced between contact surfaces of the two bodies. If thickness of lubricant or oil between the m

Slider crank mechanism, What is the mathematical displacement equation and ...

What is the mathematical displacement equation and its derivatives?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd