Find out all the zeroes - rational zeroes, Algebra

Assignment Help:

Example   Find out all the zeroes of P ( x ) = x4 - 7 x3+ 17 x2 -17 x + 6 .

Solution

We found the list of all possible rational zeroes in the earlier example.  Following they are.

                                     ±1, ± 2, ± 3, ± 6

Now we have to start evaluating the polynomial at these numbers.  We can begin anywhere in the list and will continue till we determine zero.

To perform the evaluations we will build a synthetic division table. 

Following is the first synthetic division table for this problem.

2148_Find out all the zeroes - rational zeroes.png

Thus, we found a zero. Before getting into that let's recap the computations to ensure you can do them.

The top row is the coefficients by the polynomial & the first column is the numbers which we're evaluating the polynomial at.

Each of the row (after the first) is the third row from the synthetic division procedure.  Let's rapidly look at the first couple of numbers in the second row. In the second column the number is the first coefficient dropped down. In the third column the number is then found by multiplying the -1 by 1 and adding up to the -7.  It gives the -8.  Then For the fourth number is -1 times -8 added on 17. It is 25, etc.

You can perform regular synthetic division if you have to, but it's a fine idea to be capable to do these tables as it can help with the procedure.

Okay, back to the problem.  Now we know that polynomial as, x= 1 is a zero and hence we can write the

P ( x ) = x3 - 7 x3 + 17 x2 -17 x + 6 = ( x -1) ( x3 - 6 x2 + 11x - 6)

Now we have to repeat this procedure with the polynomial Q (x) = x3 - 6 x2 + 11x - 6 .  Thus, the first thing to do is to write all possible rational roots of this polynomial & in this case we're fortunate enough to have the first & last numbers in this polynomial be the similar as the original polynomial, usually that won't happen hence don't always expect it.  Following is the list of all possible rational zeroes of this polynomial.

                                              ±1, ± 2, ± 3, ± 6

Now, before doing a new synthetic division table let's remember again that we are looking for zeroes to P ( x ) & from our first division table we determined that x= -1 is not a zero of

P (x) and therefore there is no cause to bother along with that number again.

It is something that we must always do at this step.  Take a look at the list of new possible rational zeros & ask are there any which can't be rational zeroes of the original polynomial.  If there are some, throw them out as already we will know that they won't work.  Thus, a compact list of numbers to try here is,

                                                          1, ±2, ± 3, ± 6

Note that we do have to include x= 1 in the list since this is possible for a zero to take place more that once (that means multiplicity greater than one).

Following is the synthetic division table for this polynomial.

  1 -6   11   -6

1   1    -5    6       0 = P (1) = 0!!

 

 Thus, x= 1 is also a zero of Q ( x ) and now we can write Q ( x ) as,

                           Q ( x ) = x3 - 6 x2 + 11x - 6 = ( x -1) ( x2 - 5x + 6)

Now, technically we could continue the procedure with x2 - 5x + 6 , although this is a quadratic equation and we know how to determine zeroes of these without a complicated procedure like this so let's just solve this like we usually would.

                   x2 - 5x + 6 = ( x - 2) ( x - 3) = 0

      ⇒           x=2, x = 3

Notice that these two numbers are in the list of possible rational zeroes.

Finishing up this problem then gives the given list of zeroes for P ( x ) .

x= 1             ( multiplicity 2)

x= 2             ( multiplicity 1)

x= 3              ( multiplicity 1)

Note that x= 1 has a multiplicity of 2 as it illustrated twice in our work above.

Let's also note that we can now completely factor the polynomial P (x ) = x4 - 7 x3 + 17 x2 -17 x + 6 .  We know that every zero will give a factor into the factored form & that the exponent onto the factor will be the multiplicity of that zero.  Thus, the factored form is,

P ( x ) = x4 - 7 x3 + 17 x2 -17 x + 6 = ( x -1)2 ( x - 2) ( x - 3)


Related Discussions:- Find out all the zeroes - rational zeroes

Solving quadratic functions, Sum of two numbers is 10 and their multipicati...

Sum of two numbers is 10 and their multipication is 21,find the two numbers. x^2 -10x +21=0

Rational functions, In this last section we have to discuss graphing ration...

In this last section we have to discuss graphing rational functions.  It's is possibly best to begin along a rather simple one that we can do with no all that much knowledge on how

Exponents, 10 to the 50th exponent

10 to the 50th exponent

Stephanie, a long distance telephone company charges 7 cents per minute or ...

a long distance telephone company charges 7 cents per minute or a 50 cent minimum charge per completed call, whichever is greater. Find the cost of a 1 minute call

Statistics, what is a residual and how do you solve for it

what is a residual and how do you solve for it

Financial Polynomial., Compounded semiannually P dollars is invested at ann...

Compounded semiannually P dollars is invested at annual interest rate r for 1 year. If the interest is compounded semiannually, then the polynomial P(1 + r/2)^2 represents the valu

Factoring binomials, What two numbers multiplied equal 216 but added togeth...

What two numbers multiplied equal 216 but added together equal -42?

#title.Factoring Polynomials with Synthetic Division., Show that x+3 is a f...

Show that x+3 is a factor of f(x)=3x4 - 3x3 - 36x2. Then factor f(x) completely.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd