Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Constant aceleration formulae, a car comes to a stop from a speed of 30m/s ...

a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p

Word problems, Ana has hiked 4 1/2 miles. She is 2/3 of the way along the t...

Ana has hiked 4 1/2 miles. She is 2/3 of the way along the trail. How long is the trail?

Pemdas, what is the answer using pemdas (32 divided into 4)+3

what is the answer using pemdas (32 divided into 4)+3

Find the length of the rectangle, Suppose that the width of a rectangle is ...

Suppose that the width of a rectangle is three feet shorter than length and that the perimeter of the rectangle is 84 feet. a)    Set up an equation for the perimeter involving

Power series and functions - sequences and series, Power Series and Functio...

Power Series and Functions We opened the previous section by saying that we were going to start thinking about applications of series and after that promptly spent the section

Diabetes/Calcuation, #sally wieghs 100kg. According to the 50/50 basal bolu...

#sally wieghs 100kg. According to the 50/50 basal bolus rate be per meal bolus?

Hypothesis testing procedure, Hypothesis Testing Procedure Whenever a b...

Hypothesis Testing Procedure Whenever a business complaint comes up here is a recommended procedure for conducting a statistical test. The reason of such a test is to establish

Average, A boy covered half of distance at 20km/hr and rest at 40kmlhr. cal...

A boy covered half of distance at 20km/hr and rest at 40kmlhr. calculate his average speed.

Geometry, all basic knowledge related to geometry

all basic knowledge related to geometry

Geometry, how do we rotate an object 90 counterclockwise?

how do we rotate an object 90 counterclockwise?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd