Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Determine the permutation, There are 6 contestants for the post of chairman...

There are 6 contestants for the post of chairman secretary and treasurer. These positions can be filled by any of the 6. Find the possible no. of ways whether the 3 positions may b

Differential calculus finding limits, how can i evaluate this lim of x as x...

how can i evaluate this lim of x as x approaches to a

Trigonometry, 1-tan^2 A/1+tan^2 = cos A - sinA/cos A

1-tan^2 A/1+tan^2 = cos A - sinA/cos A

Find the area of shaded region of circle of radius, Find the area of shaded...

Find the area of shaded region of circle of radius =7cm, if ∠AOB=70 o , ∠COD=50 o and ∠EOF=60 o . (Ans:77cm 2 ) Ans:    Ar( Sector AOB + Sector COD + Sector OEF) =  7

Complex numbers, express the complex number z=5+i divide 2+3i in the form ...

express the complex number z=5+i divide 2+3i in the form a+ib

Compound interest, A juicer is available for 3500 cash but was sold under i...

A juicer is available for 3500 cash but was sold under installment plan where the purchaser agreed to pay 1500 cash down and 3 equal quarterly installments. If the dealer charges i

Truth criteria-nature of mathematics, Truth Criteria :  Consider the follo...

Truth Criteria :  Consider the following statements: i) Peahens (i.e., female peacocks) lay eggs around September. ii) Water boils at 100°C. iii) 5 divides 15 without lea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd