Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Word problem, On a canoe trip. a person paddled upstream against the curren...

On a canoe trip. a person paddled upstream against the current ata an average of 2mi/h. the return trip with the current at 3mi/h. Need to find the paddling spped in still water an

Spurious correlations, Spurious Correlations - in several rare situati...

Spurious Correlations - in several rare situations when plotting the data for x and y we may have a group indicating either positive correlation or negative (-ve) correlation

Functions, find the domain of the function f(x) = (| sin inverse sin x | - ...

find the domain of the function f(x) = (| sin inverse sin x | - cos inverse cos x) ^ 1/2

Continuity, Continuity : In the last few sections we've been using the te...

Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the po

Step functions, Before going to solving differential equations we must see ...

Before going to solving differential equations we must see one more function. Without Laplace transforms this would be much more hard to solve differential equations which involve

Marketing., what is product life cycle

what is product life cycle

Reduction of order - fundamental set of solutions, Given that 2t 2 y′′ ...

Given that 2t 2 y′′ + ty′ - 3 y = 0 Show that this given solution are form a fundamental set of solutions for the differential equation? Solution The two solutions f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd