Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Calculus, I need help with my calculus work

I need help with my calculus work

Properties of radicals, If n is positive integer greater than 1 and a & b b...

If n is positive integer greater than 1 and a & b both are positive real numbers then, Consider that on occasion we can let a or b to be negative and yet have these propert

Evaluate the volume of one orange, An orange has a diameter of 3 inches. Ev...

An orange has a diameter of 3 inches. Evaluate the volume of one orange. (π = 3.14) a. 9.42 in 3 b. 113.04 in 3 c. 28.26 in 3 d. 14.13 in 3 d. To determine the

how much error, For a population with a mean of μ=70 and a standard deviat...

For a population with a mean of μ=70 and a standard deviation of o=20, how much error, on average, would you expect between the sample mean (M) and the population mean for each of

Travel time, you are driving on a freeway to a tour that is 500 kilometers ...

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

Quadratic equations by completing the square method, Can we solve the Quadr...

Can we solve the Quadratic Equations by completing the square method? if yes explain it.

Chanllenge, a pizza driver delivered 27 pizzas in one night he delivered mo...

a pizza driver delivered 27 pizzas in one night he delivered more then one pizza to only one house . every other house he only delivered pizza to 18 houses . how many pizzas did he

Drawn to a circle with center o, From a point P, two tangents PA are drawn ...

From a point P, two tangents PA are drawn to a circle with center O.If OP=diameter of the circle show that triangle APB is equilateral. Ans:    PA=PB (length of tangents

Determine the properties and query are definable in datalog, We now focus o...

We now focus on the use of Datalog for defining properties and queries m graphs. (a) Suppose that P is some property of graphs definable in Datalog. Show drat P is preserved und

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd