Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Example of factor by grouping, Factor by grouping each of the following. ...

Factor by grouping each of the following. 3x 2 - 2x + 12x - 8 Solution           3x 2 - 2x + 12x - 8 In this case we collect the first two terms & the final two te

GEOMETRY, DIFFERENCE BETWEEN RIGHT ANGLE AND SCALENE

DIFFERENCE BETWEEN RIGHT ANGLE AND SCALENE

Limit problem, limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

Explain adding rational expressions different denominators, Explain Adding ...

Explain Adding Rational Expressions with Different Denominators When you add or subtract fractions or rational expressions that have different denominators, you must first find

How to converting percents to fractions, How to Converting Percents to Frac...

How to Converting Percents to Fractions ? To convert a percent to a fraction: 1. Remove the percent sign. 2. Create a fraction, in which the resulting number from Step 1 is

probability that the card is a 8 or an ace, A standard deck of cards conta...

A standard deck of cards contains 52 cards. One card is selected at random. Determine a)    The probability that the card is a 8 or an Ace? b)    The probability that the card is

Shares and dividends, How do I proceed with a project on Shares and Dividen...

How do I proceed with a project on Shares and Dividends?

Mathematical science, state tha different types of models used in operation...

state tha different types of models used in operations research.

Estimate what is the thickness of the paper, Kenny used a micrometer to mea...

Kenny used a micrometer to measure the thickness of a piece of construction paper. The paper measured halfway among 0.24 millimeters and 0.25 millimeters. What is the thickness of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd