Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Computed the total cost y of a ride which was x miles, A ride in a taxicab ...

A ride in a taxicab costs $1.25 for the first mile and $1.15 for each additional mile. Which of the following could be used to computed the total cost y of a ride which was x miles

Draw grouped frequency tables, Q. Draw Grouped Frequency Tables? Ans. ...

Q. Draw Grouped Frequency Tables? Ans. Grouped frequency tables are often used when there are many different values. In these tables, the values are grouped into classes

., There are k baskets and n balls. The balls are put into the baskets rand...

There are k baskets and n balls. The balls are put into the baskets randomly. If k

Graph for the sequence - sequences and series, Graph for the Sequence F...

Graph for the Sequence First we wish to think about the term graphing a sequence. To graph the sequence {a n } we plot the points {n, a n } as n ranges over every possible valu

Algebra, simplify mn+mp+nq+pq /n+p

simplify mn+mp+nq+pq /n+p

Parallel vectors - applications of scalar multiplication, Parallel Vectors ...

Parallel Vectors - Applications of Scalar Multiplication This is an idea that we will see fairly a bit over the next couple of sections.  Two vectors are parallel if they have

The paperwork to purchase your new home, You recently started the paperwork...

You recently started the paperwork to purchase your new home, and you were just notified that you can move into the house in two weeks. You decide to hire a moving company, but are

Example of communicating the meaning of addition, Ms. Mehta teaches in a go...

Ms. Mehta teaches in a government primary school in Delhi. The children who come to her in Class 1 are familiar with a few numbers. At the beginning of the session, she asks the ch

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd