Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Find out the surface area of the solid - parametric curve, Find out the sur...

Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ  0 ≤ θ ≤ ?/2 Solution We wil

Differential equation, Cos(x+y)+sin(x+y)=dy/dx(solve this differential equa...

Cos(x+y)+sin(x+y)=dy/dx(solve this differential equation)

Pair of straight line, show that one of the straight lines given by ax2+2hx...

show that one of the straight lines given by ax2+2hxy+by2=o bisect an angle between the co ordinate axes, if (a+b)2=4h2

Find out the greater of two consecutive positive is 143, Find out the great...

Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a

Integration, It is known that a radioactive material decays at a rate propo...

It is known that a radioactive material decays at a rate proportional to the amount present.If after a period of 12 years,a 2g piece of radium weighs 1.99g.How long will it be befo

How many permutations can you make of the word statistics, Q. How many perm...

Q. How many permutations can you make of the word STATISTICS? Solution:  There are 10 letters in the word STATISTICS, i.e. n=10. Three of them are S's, so n 1 =3, three are T'

Determine the area of the regular octagon, Determine the area of the regula...

Determine the area of the regular octagon with the following measurements. a. 224 square units b. 112 square units c. 84 square units d. 169 square units b. See

Method of reduction of order, Consider the equation x 2 y′′+ xy′- y = 4x...

Consider the equation x 2 y′′+ xy′- y = 4x ln x (a) Verify that x is a solution to the homogeneous equation. (b) Use the method of reduction of order to derive the second

Probablity, probability as that of flipping a coin eight times and getting ...

probability as that of flipping a coin eight times and getting all the times the same side of the coin.)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd