Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Sciencetific notations, how would you answer a question like this on here ...

how would you answer a question like this on here (8x10^5)

How many more cm are required to reach the average monthly, Thomas is remai...

Thomas is remaining track of the rainfall in the month of May for his science project. The first day, 2.6 cm of rain fell. On the second day, 3.4 cm fell. On the third day, 2.1 cm

Learn, how to find basic intrest problems

how to find basic intrest problems

Quotient rule, Quotient Rule : If the two functions f(x) & g(x) are differ...

Quotient Rule : If the two functions f(x) & g(x) are differentiable (that means the derivative exist) then the quotient is differentiable and,

Adding equally sized groups-prerequisites for multiplication, Adding Equall...

Adding Equally Sized Groups:  Once children have had enough practice of making groups of equal size, you can ask them to add some of these equal groups. They can now begin to atte

How organize data by circle graphs, Q. How organize data by Circle Graphs? ...

Q. How organize data by Circle Graphs? Ans. Circle graphs, or pie charts, are another way of organizing data sets into an easy-to-read format. They make it very easy to c

Rental car agency has 50 cars, Rental car agency has 50 cars. Rental rate i...

Rental car agency has 50 cars. Rental rate in winter is 60%. What is probability that in give winter month the rental rate is fewer than 35 cars rented? Use normal distribution to

Constructions, Draw a line segment AB of length 4.4cm. Taking A as centre, ...

Draw a line segment AB of length 4.4cm. Taking A as centre, draw a circle of radius. 2cm and taking B as centre, draw another circle of radius 2.2cm. Construct tangents to each cir

Shares and divend, a company of 10000 shares of rs 100 each declares a annu...

a company of 10000 shares of rs 100 each declares a annual dividend of 5 %.what is the total amount dividend paid by the company

Power of iota, The next topic that we desire to discuss here is powers of i...

The next topic that we desire to discuss here is powers of i. Let's just take a look at what occurring while we start looking at many powers of i . i 1 = i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd