Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Systematic sampling, Systematic Sampling Systematic sampling is a part ...

Systematic Sampling Systematic sampling is a part of simple random sampling in descending or ascending orders. In systematic sampling a sample is drawn according to some predet

Dividing whole numbers, Dividing Whole Numbers: Example: Divide 3...

Dividing Whole Numbers: Example: Divide 347 by 5. Solution:                      Beginning from the left of the dividend, the divisor is divided into the

Cone - three dimensional spaces, Cone - Three dimensional spaces The be...

Cone - Three dimensional spaces The below equation is the general equation of a cone. X 2 / a 2 + y 2 /b 2 = z 2 /c 2 Here is a diagram of a typical cone. Not

Assignment, Is there any assignment work available for mathematics?

Is there any assignment work available for mathematics?

Determine dy & dy if y = cos ( x2 + 1) - x, Determine dy & Δy  if y = cos ...

Determine dy & Δy  if y = cos ( x 2 + 1) - x as x changes from x = 2 to x = 2.03 .  Solution Firstly let's deetrmine actual the change in y, Δy . Δy = cos (( 2.03) 2

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

Example of integration strategy - integration techniques, Evaluate the subs...

Evaluate the subsequent integral. ∫ (tan x/sec 4 x / sec 4 x)  dx Solution This kind of integral approximately falls into the form given in 3c.  It is a quotient of ta

Rates of change and tangent lines in limits, Rates of Change and Tangent Li...

Rates of Change and Tangent Lines : In this section we will study two fairly important problems in the study of calculus. There are two cause for looking at these problems now.

Determine y inverse for x2 + y 4 = 10, Determine  y′′  for           ...

Determine  y′′  for                                x 2 + y 4   = 10 Solution: We know that to get the second derivative we required the first derivative and to get that w

Measures of dispersion- measures of central tendency, Measures of Dispersio...

Measures of Dispersion - The measures of dispersion are extremely useful in statistical work since they indicate whether the rest of the data are scattered away from the mean

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd