Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Seqence and seies, If the M-th term of an Ap is n andn-th term M.find the p...

If the M-th term of an Ap is n andn-th term M.find the p-th term

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xe^x} as its fundamental set

Rates of change and tangent lines in limits, Rates of Change and Tangent Li...

Rates of Change and Tangent Lines : In this section we will study two fairly important problems in the study of calculus. There are two cause for looking at these problems now.

To find out the volume of a cube give formula, To find out the volume of a ...

To find out the volume of a cube which measures 3 cm by 3 cm by 3 cm, what formula would you use? The volume of a cube is the length of the side cubed and the length of the sid

Line plots, how to you find the difference between different line plots

how to you find the difference between different line plots

Elimination, Eliment t from following equations v=u+at s=ut+1/2at^2

Eliment t from following equations v=u+at s=ut+1/2at^2

General approach of exponential functions, General approach of Exponential ...

General approach of Exponential Functions : Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential f

Find the perimeter and the area of the shaded portion, The given figure con...

The given figure consists of four small semicircles and two big semicircles.  If the smaller semicircles are equal in radii and the bigger semicircles are also equal in radii, find

The geometric index or industrial share index, The Geometric Index or Indus...

The Geometric Index or Industrial Share index The Geometric Index or Industrial Share index is an index of 30 selected top industrial companies. This is calculated by taking a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd