Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Integration-mathematics, Integration Integration is the reversal of di...

Integration Integration is the reversal of differentiation An integral can either be indefinite while it has no numerical value or may definite while have specific numerical v

Formulas, all formulas of plane figures

all formulas of plane figures

Tests for an ideal index number, Tests for an Ideal Index Number 1. F...

Tests for an Ideal Index Number 1. Factor Reversal Test Factor Reversal Test indicates that when the price index is multiplied along with a quantity index that is factors

Reason why we start division, Reasons why we start division : The reason w...

Reasons why we start division : The reason we start division by considering the digit in the leftmost place is efficiency and ease . For instance, suppose we divide 417 by 3, we

Tchebecheffs ineqality theorom, what are the advantages and disadvantages o...

what are the advantages and disadvantages of tchebycheffs inequality theorem

Example of set theory, Suggest me the solution: Consider the given unive...

Suggest me the solution: Consider the given universal set T and its subjects C, D and E T = {0, 2, 4, 6, 8, 10, 12} C = {4, 8,} D = {10, 2, 0} E = {0} Find out

Las leyes de kepler, la expresión que permite calcular el radio medio de la...

la expresión que permite calcular el radio medio de la órbita de cada planeta es?

Minimax regret method -decision making under uncertainty, MINIMAX regret me...

MINIMAX regret method Minimax method assumes that the decision maker will experience 'regret' after he has made the decision and the events have happened. The decision maker ch

Estimate what is the thickness of the paper, Kenny used a micrometer to mea...

Kenny used a micrometer to measure the thickness of a piece of construction paper. The paper measured halfway among 0.24 millimeters and 0.25 millimeters. What is the thickness of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd