Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Expected opportunity loss or eol method, Expected opportunity loss or EOL m...

Expected opportunity loss or EOL method EOL method is aimed at minimizing the expected opportunity loss or OEL. The decision maker chooses the strategy along with the minimum e

Describe segments, Describe Segments, Rays, Angles, and Triangles We now...

Describe Segments, Rays, Angles, and Triangles We now define some more basic geometric figures. 1. Segments Definition A segment is the set of two given points and all the

Positive skewness-measure of central tendency, Positive Skewness - It ...

Positive Skewness - It is the tendency of a described frequency curve leaning towards the left. In a positively skewed distribution, the long tail extended to the right. In

Calculate the limit of f (-4), Let's take a look at one more example to ens...

Let's take a look at one more example to ensure that we've got all the ideas about limits down that we've looked at in the last couple of sections. Example: Given the below gr

Strategy -game theory, STRATEGY It refers to a total pattern of cho...

STRATEGY It refers to a total pattern of choices employed by any player. Strategy could be pure or a mixed one In a pure strategy, player X will play one row all of the

Hyperboloid of two sheets - three dimensional spaces, Hyperboloid of Two Sh...

Hyperboloid of Two Sheets The equation which is given here is the equation of a hyperboloid of two sheets. - x 2 /a 2 - y 2 / b 2 + z 2 /c 2 = 1 Here is a diagram of

Methods for doing integral, There are really three various methods for doin...

There are really three various methods for doing such integral. Method 1: This method uses a trig formula as,  ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

VAM, applications of VAM.

applications of VAM.

What was joe's approximate raw act score, Using the same mean and standard ...

Using the same mean and standard deviation from problem 10 (mean m = 20.1 and a standard deviation s = 5.8). Joe was informed that he scored at the 68 th percentile on the ACT, wh

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd